Question

In: Advanced Math

Suppose K is a nonempty compact subset of a metric space X and x ∈ X....

Suppose K is a nonempty compact subset of a metric space X and x ∈ X.

(i) Give an example of an x ∈ X for which there exists distinct points p, r ∈ K such that, for all q ∈ K, d(p, x) = d(r, x) ≤ d(q, x).

(ii) Show, there is a point p ∈ K such that, for all other q ∈ K, d(p, x) ≤ d(q, x).

[Suggestion: As a start, let S = {d(x, y) : y ∈ K} and show there is a sequence (qn) from K such that the numerical sequence (d(x, qn)) converges to inf(S).] 63

(iii) Let X = R \ {0} and K = (0, 1]. Is there a point x ∈ X with no closest point in K? Is K closed, bounded, complete, compact?

(iv) Let E = {e0, e1, . . . } be a countable set. Define a metric d on E by d(ej , ek) = 1 for j not equal k and j, k not equal 0; d(ej , ej ) = 0 and d(e0, ej ) = 1 + 1/j for j not equal 0. Show d is a metric on E. Let K = {e1, e2, . . . } and x = e0. Is there a closest point in K to x? Is K closed, bounded, complete, compact?

Solutions

Expert Solution


Related Solutions

If X is any topological space, a subset A ⊆ X is compact (in the subspace...
If X is any topological space, a subset A ⊆ X is compact (in the subspace topology) if and only if every cover of A by open subsets of X has a finite subcover.
1. Prove that any compact subset ot a metric space is closed and bounded. 2. Prove...
1. Prove that any compact subset ot a metric space is closed and bounded. 2. Prove that a closed subset of a compact set is a compact set.
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic...
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic to a metric space (Y, dY ) of diameter at most 1.
The metric space M is separable if it contains a countable dense subset. [Note the confusion...
The metric space M is separable if it contains a countable dense subset. [Note the confusion of language: “Separable” has nothing to do with “separation.”] (a) Prove that R^m is separable. (b) Prove that every compact metric space is separable.
Let X be a metric space and t: X to X be a map that preserves...
Let X be a metric space and t: X to X be a map that preserves distances: d(t(x), t(y)) = d(x, y). Give an example in whicht is not bijective. Could let t: x to x+1,x non-negative, but how does this mean t is not surjective? Any help will be much appreciated!
A metric space X is said to be locally path-connected if for every x ∈ X...
A metric space X is said to be locally path-connected if for every x ∈ X and every open neighborhood V of x in X, there exists a path-connected open neighborhood U of x in X with x ∈ U ⊂ V. (a) Show that connectedness + local path-connectedness ⇒ path-connectedness (b) Determine whether path-connectedness ⇒ local path-connectedness.
1(i) Show, if (X, d) is a metric space, then d∗ : X × X →...
1(i) Show, if (X, d) is a metric space, then d∗ : X × X → [0,∞) defined by d∗(x, y) = d(x, y) /1 + d(x, y) is a metric on X. Feel free to use the fact: if a, b are nonnegative real numbers and a ≤ b, then a/1+a ≤ b/1+b . 1(ii) Suppose A ⊂ B ⊂ R. Show, if A is not empty and B is bounded below, then both inf(A) and inf(B) exist and...
Let (X,d) be a metric space. The graph of f : X → R is the...
Let (X,d) be a metric space. The graph of f : X → R is the set {(x, y) E X X Rly = f(x)}. If X is connected and f is continuous, prove that the graph of f is also connected.
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is...
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset of R^k...
The goal is to show that a nonempty subset C⊆R is closed iff there is a...
The goal is to show that a nonempty subset C⊆R is closed iff there is a continuous function g:R→R such that C=g−1(0). 1) Show the IF part. (Hint: explain why the inverse image of a closed set is closed.) 2) Show the ONLY IF part. (Hint: you may cite parts of Exercise 4.3.12 if needed.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT