Question

In: Advanced Math

1. Let (X,d) be a metric space. Show that every open d-ball is a d-open subset...

1. Let (X,d) be a metric space.

  1. Show that every open d-ball is a d-open subset of X
  2. Show that every closed d-ball is a d-closed subset of X.

2: Let (X,d) be a metric space. Show that a subset A of X is d-open if and only if it is the union of a (possibly empty) set of open d-balls.

Solutions

Expert Solution

Here we shall use general definitions of limit point , open set , neighbourhood,open ball , closed set in metric space to prove this question.


Related Solutions

Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic...
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic to a metric space (Y, dY ) of diameter at most 1.
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is...
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset of R^k...
(Connected Spaces) (a) Let <X, d> be a metric space and E ⊆ X. Show that...
(Connected Spaces) (a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset...
1(i) Show, if (X, d) is a metric space, then d∗ : X × X →...
1(i) Show, if (X, d) is a metric space, then d∗ : X × X → [0,∞) defined by d∗(x, y) = d(x, y) /1 + d(x, y) is a metric on X. Feel free to use the fact: if a, b are nonnegative real numbers and a ≤ b, then a/1+a ≤ b/1+b . 1(ii) Suppose A ⊂ B ⊂ R. Show, if A is not empty and B is bounded below, then both inf(A) and inf(B) exist and...
Let (X,d) be a metric space. The graph of f : X → R is the...
Let (X,d) be a metric space. The graph of f : X → R is the set {(x, y) E X X Rly = f(x)}. If X is connected and f is continuous, prove that the graph of f is also connected.
Answer for a and be should be answered independently. Let (X,d) be a metric space, and...
Answer for a and be should be answered independently. Let (X,d) be a metric space, and a) let A ⊆ X. Let U be the set of isolated points of A. Prove that U is relatively open in A. b) let U and V be subsets of X. Prove that if U is both open and closed, and V is both open and closed, then U ∩ V is also both open and closed.
Q2. Let (E, d) be a metric space, and let x ∈ E. We say that...
Q2. Let (E, d) be a metric space, and let x ∈ E. We say that x is isolated if the set {x} is open in E. (a) Suppose that there exists r > 0 such that Br(x) contains only finitely many points. Prove that x is isolated. (b) Let E be any set, and define a metric d on E by setting d(x, y) = 0 if x = y, and d(x, y) = 1 if x and y...
Suppose K is a nonempty compact subset of a metric space X and x ∈ X....
Suppose K is a nonempty compact subset of a metric space X and x ∈ X. (i) Give an example of an x ∈ X for which there exists distinct points p, r ∈ K such that, for all q ∈ K, d(p, x) = d(r, x) ≤ d(q, x). (ii) Show, there is a point p ∈ K such that, for all other q ∈ K, d(p, x) ≤ d(q, x). [Suggestion: As a start, let S = {d(x,...
Let A be a closed subset of a T4 topological space. Show that A with the...
Let A be a closed subset of a T4 topological space. Show that A with the relative topology is a normal T1
Show that id D is dense metric space of X and if all cauchy sequences Yn...
Show that id D is dense metric space of X and if all cauchy sequences Yn from a sense set D converge in D then X is complete.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT