Question

In: Advanced Math

Let (E,d) be a metric space and K, K' disjoint compact subsets of E. Prove the...

Let (E,d) be a metric space and K, K' disjoint compact subsets of E. Prove the existence of disjoint open sets U and U' containing K and K' respectively.

Solutions

Expert Solution


Related Solutions

Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic...
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic to a metric space (Y, dY ) of diameter at most 1.
Let A , B , and C be disjoint subsets of the sample space. For each...
Let A , B , and C be disjoint subsets of the sample space. For each one of the following statements, determine whether it is true or false. Note: "False" means "not guaranteed to be true." a) P(A)+P(Ac)+P(B)=P(A∪Ac∪B) b) P(A)+P(B)≤1 c) P(Ac)+P(B)≤1 d) P(A∪B∪C)≥P(A∪B) e) P((A∩B)∪(C∩Ac))≤P(A∪B∪C)P((A∩B)∪(C∩Ac))≤P(A∪B∪C) f) P(A∪B∪C)=P(A∩Cc)+P(C)+P(B∩Ac∩Cc) ) Please explain how you got the answer.
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is...
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset of R^k...
Q2. Let (E, d) be a metric space, and let x ∈ E. We say that...
Q2. Let (E, d) be a metric space, and let x ∈ E. We say that x is isolated if the set {x} is open in E. (a) Suppose that there exists r > 0 such that Br(x) contains only finitely many points. Prove that x is isolated. (b) Let E be any set, and define a metric d on E by setting d(x, y) = 0 if x = y, and d(x, y) = 1 if x and y...
(Connected Spaces) (a) Let <X, d> be a metric space and E ⊆ X. Show that...
(Connected Spaces) (a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset...
Prove that the union of a finite collection of compact subsets is compact
Prove that the union of a finite collection of compact subsets is compact
1. Prove that any compact subset ot a metric space is closed and bounded. 2. Prove...
1. Prove that any compact subset ot a metric space is closed and bounded. 2. Prove that a closed subset of a compact set is a compact set.
Suppose K is a nonempty compact subset of a metric space X and x ∈ X....
Suppose K is a nonempty compact subset of a metric space X and x ∈ X. (i) Give an example of an x ∈ X for which there exists distinct points p, r ∈ K such that, for all q ∈ K, d(p, x) = d(r, x) ≤ d(q, x). (ii) Show, there is a point p ∈ K such that, for all other q ∈ K, d(p, x) ≤ d(q, x). [Suggestion: As a start, let S = {d(x,...
Let (X,d) be a metric space. The graph of f : X → R is the...
Let (X,d) be a metric space. The graph of f : X → R is the set {(x, y) E X X Rly = f(x)}. If X is connected and f is continuous, prove that the graph of f is also connected.
Answer for a and be should be answered independently. Let (X,d) be a metric space, and...
Answer for a and be should be answered independently. Let (X,d) be a metric space, and a) let A ⊆ X. Let U be the set of isolated points of A. Prove that U is relatively open in A. b) let U and V be subsets of X. Prove that if U is both open and closed, and V is both open and closed, then U ∩ V is also both open and closed.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT