Question

In: Advanced Math

Let X be a metric space and t: X to X be a map that preserves...

Let X be a metric space and t: X to X be a map that preserves distances: d(t(x), t(y)) = d(x, y). Give an example in whicht is not bijective.

Could let t: x to x+1,x non-negative, but how does this mean t is not surjective?

Any help will be much appreciated!

Solutions

Expert Solution

Note That : Every distance preserving map are injective but not necessarily bijective. That means Distance preserving map need not to be surjective, in this case it will not be bijective.

Yes, Your taken example is correct. But you have to consider X is set non negatives.

So, I am modifying your example by takin X=N (set of natural numbers).

Define a map,

   such that,

t(n) =n+1   

Fisrt, we prove that it is distance preserving map.

Cosider, Let

It follows definition of distance preserving.

Therefore, map t , is distance preserving.

Now, we prove it is not surjective.

For, this it is enough to show that there exist atleast one element in N (co domain) which has no pre-image in N ( domain)

Take, (co-domain)

Then   will be preimage of 1, as  

But,   ( domain)

Thus,   (co-domain) has no pre-image in N (domain)

Hence,  It is not surjective, so not bijective.


Related Solutions

Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic...
Let (X, d) be a metric space. Prove that every metric space (X, d) is homeomorphic to a metric space (Y, dY ) of diameter at most 1.
Let (X,d) be a metric space. The graph of f : X → R is the...
Let (X,d) be a metric space. The graph of f : X → R is the set {(x, y) E X X Rly = f(x)}. If X is connected and f is continuous, prove that the graph of f is also connected.
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is...
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset of R^k...
(Connected Spaces) (a) Let <X, d> be a metric space and E ⊆ X. Show that...
(Connected Spaces) (a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset...
Q2. Let (E, d) be a metric space, and let x ∈ E. We say that...
Q2. Let (E, d) be a metric space, and let x ∈ E. We say that x is isolated if the set {x} is open in E. (a) Suppose that there exists r > 0 such that Br(x) contains only finitely many points. Prove that x is isolated. (b) Let E be any set, and define a metric d on E by setting d(x, y) = 0 if x = y, and d(x, y) = 1 if x and y...
Answer for a and be should be answered independently. Let (X,d) be a metric space, and...
Answer for a and be should be answered independently. Let (X,d) be a metric space, and a) let A ⊆ X. Let U be the set of isolated points of A. Prove that U is relatively open in A. b) let U and V be subsets of X. Prove that if U is both open and closed, and V is both open and closed, then U ∩ V is also both open and closed.
18.2.6. Problem. Let M be a metric space with the discrete metric. (a) Which sequences in...
18.2.6. Problem. Let M be a metric space with the discrete metric. (a) Which sequences in M are Cauchy? (b) Show that M is complete.
Suppose K is a nonempty compact subset of a metric space X and x ∈ X....
Suppose K is a nonempty compact subset of a metric space X and x ∈ X. (i) Give an example of an x ∈ X for which there exists distinct points p, r ∈ K such that, for all q ∈ K, d(p, x) = d(r, x) ≤ d(q, x). (ii) Show, there is a point p ∈ K such that, for all other q ∈ K, d(p, x) ≤ d(q, x). [Suggestion: As a start, let S = {d(x,...
A metric space X is said to be locally path-connected if for every x ∈ X...
A metric space X is said to be locally path-connected if for every x ∈ X and every open neighborhood V of x in X, there exists a path-connected open neighborhood U of x in X with x ∈ U ⊂ V. (a) Show that connectedness + local path-connectedness ⇒ path-connectedness (b) Determine whether path-connectedness ⇒ local path-connectedness.
1(i) Show, if (X, d) is a metric space, then d∗ : X × X →...
1(i) Show, if (X, d) is a metric space, then d∗ : X × X → [0,∞) defined by d∗(x, y) = d(x, y) /1 + d(x, y) is a metric on X. Feel free to use the fact: if a, b are nonnegative real numbers and a ≤ b, then a/1+a ≤ b/1+b . 1(ii) Suppose A ⊂ B ⊂ R. Show, if A is not empty and B is bounded below, then both inf(A) and inf(B) exist and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT