Question

In: Advanced Math

1. Prove that any compact subset ot a metric space is closed and bounded. 2. Prove...

1. Prove that any compact subset ot a metric space is closed and bounded.

2. Prove that a closed subset of a compact set is a compact set.

Solutions

Expert Solution


Related Solutions

Prove that a subspace of R is compact if and only if it is closed and bounded.
Prove that a subspace of R is compact if and only if it is closed and bounded.
Let A be a subset of all Real Numbers. Prove that A is closed and bounded...
Let A be a subset of all Real Numbers. Prove that A is closed and bounded (I.e. compact) if and only if every sequence of numbers from A has a subsequence that converges to a point in A. Given it is an if and only if I know we need to do a forward and backwards proof. For the backwards proof I was thinking of approaching it via contrapositive, but I am having a hard time writing the proof in...
Suppose K is a nonempty compact subset of a metric space X and x ∈ X....
Suppose K is a nonempty compact subset of a metric space X and x ∈ X. (i) Give an example of an x ∈ X for which there exists distinct points p, r ∈ K such that, for all q ∈ K, d(p, x) = d(r, x) ≤ d(q, x). (ii) Show, there is a point p ∈ K such that, for all other q ∈ K, d(p, x) ≤ d(q, x). [Suggestion: As a start, let S = {d(x,...
If X is any topological space, a subset A ⊆ X is compact (in the subspace...
If X is any topological space, a subset A ⊆ X is compact (in the subspace topology) if and only if every cover of A by open subsets of X has a finite subcover.
Let (E,d) be a metric space and K, K' disjoint compact subsets of E. Prove the...
Let (E,d) be a metric space and K, K' disjoint compact subsets of E. Prove the existence of disjoint open sets U and U' containing K and K' respectively.
If a set K that is a subset of the real numbers is closed and bounded,...
If a set K that is a subset of the real numbers is closed and bounded, then it is compact.
Real Analysis: Prove a subset of the Reals is compact if and only if it is...
Real Analysis: Prove a subset of the Reals is compact if and only if it is closed and bounded. In other words, the set of reals satisfies the Heine-Borel property.
Let (an) be a real sequence in the standard metric. Prove that (an) is bounded if...
Let (an) be a real sequence in the standard metric. Prove that (an) is bounded if and only if every subsequence of (an) has a convergent subsequence.
Prove the following Theorems: 1. A finite union of compact sets is compact. 2. Any intersection...
Prove the following Theorems: 1. A finite union of compact sets is compact. 2. Any intersection of compact set is compact. 3. A closed subset of a compact set is compact. 4. Every finite set in IRn is compact.
1. Prove that if a set A is bounded, then A-bar is also bounded. 2. Prove...
1. Prove that if a set A is bounded, then A-bar is also bounded. 2. Prove that if A is a bounded set, then A-bar is compact.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT