Question

In: Statistics and Probability

Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .941a...

Model Summary

Model

R

R Square

Adjusted R Square

Std. Error of the Estimate

1

.941a

.885

.872

1.00528

a. Predictors: (Constant), SelfControl, NumStrains

ANOVAa

Model

Sum of Squares

df

Mean Square

F

Sig.

1

Regression

132.570

2

66.285

65.590

.000b

Residual

17.180

17

1.011

Total

149.750

19

a. Dependent Variable: AgeFirstArrest

b. Predictors: (Constant), SelfControl, NumStrains

Coefficientsa

Model

Unstandardized Coefficients

Standardized Coefficients

t

Sig.

95.0% Confidence Interval for B

Collinearity Statistics

B

Std. Error

Beta

Lower Bound

Upper Bound

Tolerance

VIF

1

(Constant)

23.173

.669

34.614

.000

21.760

24.585

NumStrains

-.110

.051

-.184

-2.163

.045

-.218

-.003

.937

1.067

SelfControl

-.106

.010

-.878

-10.343

.000

-.128

-.085

.937

1.067

a. Dependent Variable: AgeFirstArrest

Collinearity Diagnosticsa

Model

Dimension

Eigenvalue

Condition Index

Variance Proportions

(Constant)

NumStrains

SelfControl

1

1

2.783

1.000

.01

.02

.02

2

.147

4.350

.07

.93

.23

3

.070

6.291

.92

.05

.76

a. Dependent Variable: AgeFirstArrest

3. What is the adjusted r2 value and what does that value tell us?

4. Is the model as a whole significant? How do you know?

5. Which variable or variables significantly explain age at first arrest? How do you know?

6. Which variable explains more of age at first arrest? How do you know?

7. Are the beta values in the expected direction (a higher self control score indicates lower self control)? Explain.

8. Are there problems with collinearity? How do you know?

Solutions

Expert Solution

Please don't hesitate to give a thumbs up to the answer, in case you're satisfied with it

3. What is the adjusted r2 value and what does that value tell us?

.872 is the adjusted r2 value. It tells us that 87.2% of variation in dependent variable is being explained by the independent variables, this r square is also adjusted for the number of independent variables used in the equation

4. Is the model as a whole significant? How do you know?

Yes, model is significant. We know this from ANOVA table' p-value. If its less than .05 then
model is statistically significant

5. Which variable or variables significantly explain age at first arrest? How do you know?
Both NumStrains and SelfControl do. We know this because in the "Coefficients" table both
these coefficient' p-value is less than .05.


6. Which variable explains more of age at first arrest? How do you know?
SelfControl , because of the following reason: It has the least p-value, indicating more significance of the variable

7. Are the beta values in the expected direction (a higher self control score indicates lower self control)? Explain.
Yes, a higher selft control and a higher Number of strains leads to lower Age First arrests is an expected behavior. The model exactly replicates these results through the sign of the beta coefficients ( i.e. its -ive, indicating a inverse relationship_

8. Are there problems with collinearity? How do you know?
No problem w.r.t to collinearity. We know this because the VIF values in 1.067, a low value for calling out multicollinearity. Also, a value above 30 on the condition index might qualify for potential multicollinearity problem


Related Solutions

Interpret the tables below Model Summary Model R R Square Adjusted R Square Std. Error of...
Interpret the tables below Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .454a .206 .206 2.556 a. Predictors: (Constant), Trust in Government Index (higher scores=more trust), Handling of Economy Index (higher scores=higher satisfaction) ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 58566.582 2 29283.291 4481.186 .000b Residual 225395.511 34492 6.535 Total 283962.093 34494 a. Dependent Variable: Q46a. Level of democracy: today b. Predictors: (Constant), Trust in Government Index (higher...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error 3.573206748 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.025113 2152.67504 168.601791 2.7119E-73 Residual 451 5758.280717 12.7678065 Total 454 12216.30583 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.250148858 0.359211364 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RBUK 0.025079378 0.023812698 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.713727515 0.042328316 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error 3.57320675 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.02511 2152.67504 168.601791 2.7119E-73 Residual 451 5758.28072 12.7678065 Total 454 12216.3058 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.2501489 0.35921136 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RUK 0.02507938 0.0238127 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.71372752 0.04232832 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 13.69067 Observations 1142 ANOVA df SS MS F Significance F Regression 1 8481.255 8481.255 45.2492 2.74E-11 Residual 1140 213675.2 187.4344 Total 1141 222156.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 40.19631 0.596741 67.35967 0 39.02547 41.36714 39.02547 41.36714 X Variable 1 7.31E-05 1.09E-05 6.726752 2.74E-11 5.18E-05 9.45E-05 5.18E-05 9.45E-05 Discuss the statistical significance of the model...
SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error 18.42647 Observations 1142 ANOVA df SS MS F Significance F Regression 1 72088.71 72088.71 212.3161 3.12E-44 Residual 1140 387069.6 339.5348 Total 1141 459158.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 26.35917 0.803163 32.8192 7.4E-167 24.78333 27.93501 24.78333 27.93501 X Variable 1 0.000213 1.46E-05 14.57107 3.12E-44 0.000184 0.000242 0.000184 0.000242 a. Write the reqression equation. Discuss the...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 36578.71 Observations 1142 ANOVA df SS MS F Significance F Regression 1 6.05E+10 6.05E+10 45.2492 2.74E-11 Residual 1140 1.53E+12 1.34E+09 Total 1141 1.59E+12 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 17779.38 3518.846 5.052617 5.07E-07 10875.24 24683.53 10875.24 24683.53 X Variable 1 522.0407 77.60665 6.726752 2.74E-11 369.7728 674.3086 369.7728 674.3086 Income using age Write the regression equation....
The best measure for model selection is the Adjusted R-square.
  The best measure for model selection is the Adjusted R-square. Partial sums of squares are more useful than sequential sums of squares. If we have a categorical variable with 4 categories we will need 4 dummy variables to model this.    
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error...
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error 9.4006 ANOVA df SS MS F Regression 1 2317.6 2317.6 26.226 Residual 6 530.23 88.372 Total 7 2847.9 Coefficients Standard Error t Stat P-value Intercept 45.897 5.5447 8.2776 0.0002 Number of Surgeries (x) 5.1951 1.0144 5.1211 0.0022 1. r = 0.90 strong positive correlation 2. y = 5.195 x + 45.897 , 3. r2 = 0.8138 , and 4. Se =  9.4006 5. Results of...
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247...
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247 Total Number Of Cases 12 Hamb Consump = 176.2709 - 106.6901 * Hamb Price + 4.5651 * Income (1,000s) - 12.1556 * Hot Dog Price ANOVA d.f. SS MS F p-level Regression 3. 3,560.58212 1,186.86071 658.549258 0. Residual 8. 14.41788 1.80224 Total 11. 3,575. Coefficients Standard Error LCL UCL t Stat p-level H0 (5%) rejected? Intercept 176.27093 45.28994 71.83215 280.709717 3.89206 0.0046 Yes Hamb...
Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations...
Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations 61 ANOVA df SS MS F Significance F Regression 1 0.040458253 0.040458253 15.083009 0.000262577 Residual 59 0.158259997 0.002682373 Total 60 0.19871825 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.00987396 0.006785133 1.455234544 0.150904641 -0.00370306 0.023450979 -0.00370306 0.023450979 S&P 0.752212332 0.193685208 3.883684976 0.000262577 0.364649126 1.139775537 0.364649126 1.139775537 Current estimate given to us in the directions 1.07 RESIDUAL OUTPUT...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT