Question

In: Economics

Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247...

Linear Regression
Regression Statistics
R 0.99798
R Square 0.99597
Adjusted R Square 0.99445
Standard Error 1.34247
Total Number Of Cases 12
Hamb Consump = 176.2709 - 106.6901 * Hamb Price + 4.5651 * Income (1,000s) - 12.1556 * Hot Dog Price
ANOVA
d.f. SS MS F p-level
Regression 3. 3,560.58212 1,186.86071 658.549258 0.
Residual 8. 14.41788 1.80224
Total 11. 3,575.
Coefficients Standard Error LCL UCL t Stat p-level H0 (5%) rejected?
Intercept 176.27093 45.28994 71.83215 280.709717 3.89206 0.0046 Yes
Hamb Price -106.69008 15.52317 -142.48657 -70.89359 -6.87296 0.00013 Yes
Income (1,000s) 4.5651 1.80603 0.40039 8.72981 2.5277 0.03538 Yes
Hot Dog Price -12.15559 20.97373 -60.5211 36.20991 -0.57956 0.57816 No
T (5%) 2.306
LCL - Lower value of a reliable interval (LCL)
UCL - Upper value of a reliable interval (UCL)
Residuals
Observation Predicted Y Residual Standard Residuals
1 49.13695 0.86305 0.75384
2 78.22258 1.77742 1.55251
3 93.75923 1.24077 1.08377
4 104.87439 0.12561 0.10971
5 70.45426 -0.45426 -0.39678
6 84.62138 0.37862 0.33072
7 56.28714 -1.28714 -1.12427
8 61.62165 -1.62165 -1.41645
9 75.33225 -0.33225 -0.29021
10 90.8689 -0.8689 -0.75895
11 101.22231 -1.22231 -1.06765
12 63.59896 1.40104 1.22376
QUESTIONS 1 - 5. This problem is worth 25 points.
Use the following values to complete the problems below:
Hamburger demand 77.5
Hamb Price (hamburger price) 1.35
Income (1000's)

14.06

64486.5235

Hot Dog Price

4. Calculate the cross price of elasticity of hamburger with respect to the price of hot dogs and if the price of hamburgers increased by 10% how much would the demand for hamburgers change? (show calculation)

1.57

Solutions

Expert Solution

From given regression equation,

Hamburger demand = 176.2709 - 106.6901 x Hamburger Price + 4.5651 x Income - 12.1556 x Hot Dog Price

Plugging in given values,

77.5 = 176.2709 - (106.6901 x 1.35) + (4.5651 x 14.06) - (12.1556 x Hot dog price)

77.5 = 176.2709 - 144.03 + 64.19 - (12.1556 x Hot dog price)

77.5 = 96.4262 - (12.1556 x Hot dog price)

(12.1556 x Hot dog price) = 18.9262

Hot dog price = 1.557

(1) Cross price elasticity of demand = (dHambConsup / dHotDogPrice) x (Hot Dog Price / Hamburger demand)

= - 12.1556 x (1.557 / 77.5)

= - 0.2442

(2) Own price elasticity of demand = (dHambConsup / dHambPrice) x (HambPrice / Hamburger demand)

= - 106.6901 x (1.35 / 77.5)

= - 1.8505

It means that as price of hamburger increases by 1%, quantity demanded of hamburger will decrease by 1.8505%.

As price of hamburger increase by 10%, quantity demanded of hamburger will decrease by (10 x 1.8505)% = 18.505%.


Related Solutions

Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error...
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error 9.4006 ANOVA df SS MS F Regression 1 2317.6 2317.6 26.226 Residual 6 530.23 88.372 Total 7 2847.9 Coefficients Standard Error t Stat P-value Intercept 45.897 5.5447 8.2776 0.0002 Number of Surgeries (x) 5.1951 1.0144 5.1211 0.0022 1. r = 0.90 strong positive correlation 2. y = 5.195 x + 45.897 , 3. r2 = 0.8138 , and 4. Se =  9.4006 5. Results of...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error 3.573206748 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.025113 2152.67504 168.601791 2.7119E-73 Residual 451 5758.280717 12.7678065 Total 454 12216.30583 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.250148858 0.359211364 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RBUK 0.025079378 0.023812698 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.713727515 0.042328316 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error 3.57320675 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.02511 2152.67504 168.601791 2.7119E-73 Residual 451 5758.28072 12.7678065 Total 454 12216.3058 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.2501489 0.35921136 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RUK 0.02507938 0.0238127 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.71372752 0.04232832 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 13.69067 Observations 1142 ANOVA df SS MS F Significance F Regression 1 8481.255 8481.255 45.2492 2.74E-11 Residual 1140 213675.2 187.4344 Total 1141 222156.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 40.19631 0.596741 67.35967 0 39.02547 41.36714 39.02547 41.36714 X Variable 1 7.31E-05 1.09E-05 6.726752 2.74E-11 5.18E-05 9.45E-05 5.18E-05 9.45E-05 Discuss the statistical significance of the model...
SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error 18.42647 Observations 1142 ANOVA df SS MS F Significance F Regression 1 72088.71 72088.71 212.3161 3.12E-44 Residual 1140 387069.6 339.5348 Total 1141 459158.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 26.35917 0.803163 32.8192 7.4E-167 24.78333 27.93501 24.78333 27.93501 X Variable 1 0.000213 1.46E-05 14.57107 3.12E-44 0.000184 0.000242 0.000184 0.000242 a. Write the reqression equation. Discuss the...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 36578.71 Observations 1142 ANOVA df SS MS F Significance F Regression 1 6.05E+10 6.05E+10 45.2492 2.74E-11 Residual 1140 1.53E+12 1.34E+09 Total 1141 1.59E+12 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 17779.38 3518.846 5.052617 5.07E-07 10875.24 24683.53 10875.24 24683.53 X Variable 1 522.0407 77.60665 6.726752 2.74E-11 369.7728 674.3086 369.7728 674.3086 Income using age Write the regression equation....
Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations...
Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations 61 ANOVA df SS MS F Significance F Regression 1 0.040458253 0.040458253 15.083009 0.000262577 Residual 59 0.158259997 0.002682373 Total 60 0.19871825 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.00987396 0.006785133 1.455234544 0.150904641 -0.00370306 0.023450979 -0.00370306 0.023450979 S&P 0.752212332 0.193685208 3.883684976 0.000262577 0.364649126 1.139775537 0.364649126 1.139775537 Current estimate given to us in the directions 1.07 RESIDUAL OUTPUT...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 9.1970 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept -115.6768 Octane 1.5305 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 89.0000 1.4274 87.0000 2.0544 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and the...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted R Square 0.908 Standard Error 5.779 Observations 52 ANOVA df SS MS F Significance F Regression 4 16947.86487 4236.9662 126.8841 1.45976E-24 Residual 47 1569.442824 33.392401 Total 51 18517.30769 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 39.08190 15.31261 2.55227 0.014012 8.27693 69.88687 X-Price -7.37039 0.98942 -7.44921 1.71E-09 -9.36084 -5.37994 Y-Price -5.42813 0.33793 -16.06289 1.03E-20 -6.10796 -4.74831 Z-Price 4.05067 0.33949 11.93173 7.95E-16...
Interpret the tables below Model Summary Model R R Square Adjusted R Square Std. Error of...
Interpret the tables below Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .454a .206 .206 2.556 a. Predictors: (Constant), Trust in Government Index (higher scores=more trust), Handling of Economy Index (higher scores=higher satisfaction) ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 58566.582 2 29283.291 4481.186 .000b Residual 225395.511 34492 6.535 Total 283962.093 34494 a. Dependent Variable: Q46a. Level of democracy: today b. Predictors: (Constant), Trust in Government Index (higher...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT