In: Economics
Linear Regression | |||||||||||||||
Regression Statistics | |||||||||||||||
R | 0.99798 | ||||||||||||||
R Square | 0.99597 | ||||||||||||||
Adjusted R Square | 0.99445 | ||||||||||||||
Standard Error | 1.34247 | ||||||||||||||
Total Number Of Cases | 12 | ||||||||||||||
Hamb Consump = 176.2709 - 106.6901 * Hamb Price + 4.5651 * Income (1,000s) - 12.1556 * Hot Dog Price | |||||||||||||||
ANOVA | |||||||||||||||
d.f. | SS | MS | F | p-level | |||||||||||
Regression | 3. | 3,560.58212 | 1,186.86071 | 658.549258 | 0. | ||||||||||
Residual | 8. | 14.41788 | 1.80224 | ||||||||||||
Total | 11. | 3,575. | |||||||||||||
Coefficients | Standard Error | LCL | UCL | t Stat | p-level | H0 (5%) rejected? | |||||||||
Intercept | 176.27093 | 45.28994 | 71.83215 | 280.709717 | 3.89206 | 0.0046 | Yes | ||||||||
Hamb Price | -106.69008 | 15.52317 | -142.48657 | -70.89359 | -6.87296 | 0.00013 | Yes | ||||||||
Income (1,000s) | 4.5651 | 1.80603 | 0.40039 | 8.72981 | 2.5277 | 0.03538 | Yes | ||||||||
Hot Dog Price | -12.15559 | 20.97373 | -60.5211 | 36.20991 | -0.57956 | 0.57816 | No | ||||||||
T (5%) | 2.306 | ||||||||||||||
LCL - Lower value of a reliable interval (LCL) | |||||||||||||||
UCL - Upper value of a reliable interval (UCL) | |||||||||||||||
Residuals | |||||||||||||||
Observation | Predicted Y | Residual | Standard Residuals | ||||||||||||
1 | 49.13695 | 0.86305 | 0.75384 | ||||||||||||
2 | 78.22258 | 1.77742 | 1.55251 | ||||||||||||
3 | 93.75923 | 1.24077 | 1.08377 | ||||||||||||
4 | 104.87439 | 0.12561 | 0.10971 | ||||||||||||
5 | 70.45426 | -0.45426 | -0.39678 | ||||||||||||
6 | 84.62138 | 0.37862 | 0.33072 | ||||||||||||
7 | 56.28714 | -1.28714 | -1.12427 | ||||||||||||
8 | 61.62165 | -1.62165 | -1.41645 | ||||||||||||
9 | 75.33225 | -0.33225 | -0.29021 | ||||||||||||
10 | 90.8689 | -0.8689 | -0.75895 | ||||||||||||
11 | 101.22231 | -1.22231 | -1.06765 | ||||||||||||
12 | 63.59896 | 1.40104 | 1.22376 | ||||||||||||
QUESTIONS 1 - 5. | This problem is worth 25 points. | ||||||||||||||
Use the following values to complete the problems below: | |||||||||||||||
Hamburger demand | 77.5 | ||||||||||||||
Hamb Price (hamburger price) | 1.35 | ||||||||||||||
Income (1000's) |
14.06 |
64486.5235 | |||||||||||||
|
From given regression equation,
Hamburger demand = 176.2709 - 106.6901 x Hamburger Price + 4.5651 x Income - 12.1556 x Hot Dog Price
Plugging in given values,
77.5 = 176.2709 - (106.6901 x 1.35) + (4.5651 x 14.06) - (12.1556 x Hot dog price)
77.5 = 176.2709 - 144.03 + 64.19 - (12.1556 x Hot dog price)
77.5 = 96.4262 - (12.1556 x Hot dog price)
(12.1556 x Hot dog price) = 18.9262
Hot dog price = 1.557
(1) Cross price elasticity of demand = (dHambConsup / dHotDogPrice) x (Hot Dog Price / Hamburger demand)
= - 12.1556 x (1.557 / 77.5)
= - 0.2442
(2) Own price elasticity of demand = (dHambConsup / dHambPrice) x (HambPrice / Hamburger demand)
= - 106.6901 x (1.35 / 77.5)
= - 1.8505
It means that as price of hamburger increases by 1%, quantity demanded of hamburger will decrease by 1.8505%.
As price of hamburger increase by 10%, quantity demanded of hamburger will decrease by (10 x 1.8505)% = 18.505%.