Question

In: Statistics and Probability

SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error...

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.396235

R Square

0.157002

Adjusted R Square

0.156262

Standard Error

18.42647

Observations

1142

ANOVA

df

SS

MS

F

Significance F

Regression

1

72088.71

72088.71

212.3161

3.12E-44

Residual

1140

387069.6

339.5348

Total

1141

459158.4

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

26.35917

0.803163

32.8192

7.4E-167

24.78333

27.93501

24.78333

27.93501

X Variable 1

0.000213

1.46E-05

14.57107

3.12E-44

0.000184

0.000242

0.000184

0.000242

a. Write the reqression equation.

  1. Discuss the statistical significance of the model using the appropriate regression statistic at a 95% level of confidence.
  2. Discuss the statistical significance of the coefficient for the independent variable using the appropriate regression statistic at a 95% level of confidence.
  3. Interpret the coefficient for the independent variable.
  4. What percentage of the observed variation in income is explained by the model?
  5. Predict the value of a person’s income who works 50 hours a week, using this regression model.

Solutions

Expert Solution

Solution:

Given:

We are given regression analysis output of variables Income and Number of work hours per week.

Part a) Write the regression equation.

General regression equation is given by:

y = b0 + b1 * x

Here y = dependent variable = Income , x = independent variable = Number of work hours per week

b0 = Intercept = 26.35917

b1 = Slope = 0.000213

Thus regression equation is:

Income = 26.35917 + 0.000213 * Number of work hours per week

Part b) Discuss the statistical significance of the model using the appropriate regression statistic at a 95% level of confidence , that is for 1 - 0.95 = 0.05 level of significance.

ANOVA table is used to test the significance of overall model.

From ANOVA we can see: Significance F = 3.12E-44

3.12E-44 is scientific number and E-44 means we have to move 44 decimal places to left of 3.12

Thus rounding this number to 4 decimal places we get:

Significance F = 0.0000

That is: P-value = 0.0000

Since P-value = 0.0000 < 0.05 level of significance , we conclude that the fitted model is significant.

Part c) Discuss the statistical significance of the coefficient for the independent variable using the appropriate regression statistic at a 95% level of confidence.

From P-value column, we can see P-value for slope coefficient is 3.12E-44 = 0.0000

Since P-value = 0.0000 < 0.05 level of significance , the coefficient for the independent variable is statistically significant.

Part d) Interpret the coefficient for the independent variable.

Intercept is the value of dependent variable y , when x = 0.

Here y is income and x is Number of work hours per week.

If Number of work hours per week is 0, then there would be no possibility of Income.

Thus intercept is meaningless in this context.

That is: if Number of work hours per week is 0 , then it is meaningless to have income of 26.35917 .

Slope: Slope is the coefficient of independent variable. It gives amount of change in dependent variable when independent variable changed by one unit.

Thus we have Slope = 0.000213.

Thus if we increase number of hour per week by one hour, then there is increase of Income by the amount 0.000213.

Part e) What percentage of the observed variation in income is explained by the model?

R-square gives the amount variation in dependent variable which is explained by model ( by independent variable)

Here R-square = 0.157002 = 15.7%

Thus About 15.7% of the observed variation in income is explained by the model.

Part f) Predict the value of a person’s income who works 50 hours a week, using this regression model.

Put Number of work hours per week = 50 in regression equation obtained in part a)

Income = 26.35917 + 0.000213 * Number of work hours per week

Income = 26.35917 + 0.000213 * 50

Income = 26.35917 + 0.01065

Income = 26.36982

Thus the predicted value of a person’s income who works 50 hours a week is 26.36982


Related Solutions

SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error 3.573206748 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.025113 2152.67504 168.601791 2.7119E-73 Residual 451 5758.280717 12.7678065 Total 454 12216.30583 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.250148858 0.359211364 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RBUK 0.025079378 0.023812698 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.713727515 0.042328316 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error 3.57320675 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.02511 2152.67504 168.601791 2.7119E-73 Residual 451 5758.28072 12.7678065 Total 454 12216.3058 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.2501489 0.35921136 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RUK 0.02507938 0.0238127 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.71372752 0.04232832 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 13.69067 Observations 1142 ANOVA df SS MS F Significance F Regression 1 8481.255 8481.255 45.2492 2.74E-11 Residual 1140 213675.2 187.4344 Total 1141 222156.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 40.19631 0.596741 67.35967 0 39.02547 41.36714 39.02547 41.36714 X Variable 1 7.31E-05 1.09E-05 6.726752 2.74E-11 5.18E-05 9.45E-05 5.18E-05 9.45E-05 Discuss the statistical significance of the model...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 36578.71 Observations 1142 ANOVA df SS MS F Significance F Regression 1 6.05E+10 6.05E+10 45.2492 2.74E-11 Residual 1140 1.53E+12 1.34E+09 Total 1141 1.59E+12 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 17779.38 3518.846 5.052617 5.07E-07 10875.24 24683.53 10875.24 24683.53 X Variable 1 522.0407 77.60665 6.726752 2.74E-11 369.7728 674.3086 369.7728 674.3086 Income using age Write the regression equation....
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 9.1970 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept -115.6768 Octane 1.5305 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 89.0000 1.4274 87.0000 2.0544 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and the...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted R Square 0.908 Standard Error 5.779 Observations 52 ANOVA df SS MS F Significance F Regression 4 16947.86487 4236.9662 126.8841 1.45976E-24 Residual 47 1569.442824 33.392401 Total 51 18517.30769 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 39.08190 15.31261 2.55227 0.014012 8.27693 69.88687 X-Price -7.37039 0.98942 -7.44921 1.71E-09 -9.36084 -5.37994 Y-Price -5.42813 0.33793 -16.06289 1.03E-20 -6.10796 -4.74831 Z-Price 4.05067 0.33949 11.93173 7.95E-16...
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error...
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error 9.4006 ANOVA df SS MS F Regression 1 2317.6 2317.6 26.226 Residual 6 530.23 88.372 Total 7 2847.9 Coefficients Standard Error t Stat P-value Intercept 45.897 5.5447 8.2776 0.0002 Number of Surgeries (x) 5.1951 1.0144 5.1211 0.0022 1. r = 0.90 strong positive correlation 2. y = 5.195 x + 45.897 , 3. r2 = 0.8138 , and 4. Se =  9.4006 5. Results of...
Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations...
Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations 61 ANOVA df SS MS F Significance F Regression 1 0.040458253 0.040458253 15.083009 0.000262577 Residual 59 0.158259997 0.002682373 Total 60 0.19871825 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.00987396 0.006785133 1.455234544 0.150904641 -0.00370306 0.023450979 -0.00370306 0.023450979 S&P 0.752212332 0.193685208 3.883684976 0.000262577 0.364649126 1.139775537 0.364649126 1.139775537 Current estimate given to us in the directions 1.07 RESIDUAL OUTPUT...
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247...
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247 Total Number Of Cases 12 Hamb Consump = 176.2709 - 106.6901 * Hamb Price + 4.5651 * Income (1,000s) - 12.1556 * Hot Dog Price ANOVA d.f. SS MS F p-level Regression 3. 3,560.58212 1,186.86071 658.549258 0. Residual 8. 14.41788 1.80224 Total 11. 3,575. Coefficients Standard Error LCL UCL t Stat p-level H0 (5%) rejected? Intercept 176.27093 45.28994 71.83215 280.709717 3.89206 0.0046 Yes Hamb...
Interpret the tables below Model Summary Model R R Square Adjusted R Square Std. Error of...
Interpret the tables below Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .454a .206 .206 2.556 a. Predictors: (Constant), Trust in Government Index (higher scores=more trust), Handling of Economy Index (higher scores=higher satisfaction) ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 58566.582 2 29283.291 4481.186 .000b Residual 225395.511 34492 6.535 Total 283962.093 34494 a. Dependent Variable: Q46a. Level of democracy: today b. Predictors: (Constant), Trust in Government Index (higher...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT