Question

In: Math

Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations...

Regression Statistics
Multiple R 0.451216205
R Square 0.203596063
Adjusted R Square 0.190097692
Standard Error 0.051791629
Observations 61
ANOVA
df SS MS F Significance F
Regression 1 0.040458253 0.040458253 15.083009 0.000262577
Residual 59 0.158259997 0.002682373
Total 60 0.19871825
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.00987396 0.006785133 1.455234544 0.150904641 -0.00370306 0.023450979 -0.00370306 0.023450979
S&P 0.752212332 0.193685208 3.883684976 0.000262577 0.364649126 1.139775537 0.364649126 1.139775537
Current estimate given to us in the directions
1.07
RESIDUAL OUTPUT
Observation Predicted Y Residuals Standard Residuals
1 0.038198737 -0.01978845 -0.385302506
2 -0.00179574 0.144257104 2.808841664

1. How does your estimate of beta compare with the beta estimate provided (1.07)? Why might your estimate differ from estimated beta of 1.07?

2. How much of the variability of your security’s return is “explained” by the variability of returns in the “market”? (Note: In your case, the market is represented by the S&P 500 Index.) Do you think that a different market index might be a better representation of the market for your particular security? Why/Why not?

3. What is the correlation of returns for your security with the market for the selected time period? Might this relationship change over time, and if so, how and why?

4. Does the relationship between your security and the market appear to be statistically significantly different than zero? What evidence from the regression supports your conclusion?

5. Review the standardized residuals and comment about the importance of individual data points (if any) that may have influenced your estimation of beta. (observation 2 is the only skewed one)

Solutions

Expert Solution

1. I think the estimate of beta provided here is instructed, maybe it is a regression outcome from a different regression model. The current model has an output of beta which is in the same direction but as it is a linear regression model, so it will have intercept and slope. So, beta will determine the slope of the straight line. As the beta obtained from the outcome is smaller than the beta mentioned here in the question, hence we can say that the straight line will be slightly less steep than the mentioned regression line because the slope is smaller than the mentioned one.

2. The regression Sum of Square is reported to 0.040458253, which means that only 4% variability can be explained by the model.

I think maybe different variable can be more predictive power than the S&P500 index. Because as for the regression perspective the value of the explained variability is very much less. May be multiple linear regression (Regression with more than one explanatory variables) will give better results.

3. This question might need the data; if I am not wrong. In this case, feel free to write down the query in the comment section, and I shall be happy to answer it. For now, the correlation (rather, relation) with the security and the S&P500 index is slightly positive as per the regression outcome. one unit of increase in the S&P500 index will have 75% increment in the dependent variable, which is security.

4. Yes, as per the regression model, the relationship between the dependent and independent variable is statistically significant. Because, the p-value is 0.000262577, which is lesser than the model level of significance 0.05.

5. The standardized residual is a measure of the strength of the difference between observed and expected values. It’s a measure of how significant your cells are to the chi-square value. When you compare the cells, the standardized residual makes it easy to see which cells are contributing the most to the value, and which are contributing the least. If your sample is large enough, the standardized residual can be roughly compared to a z-score. Standardization can work even if your variables are not normally distributed.

A general rule of thumb for figuring out what the standardized residual means, is:

  • If the residual is less than -2, the cell’s observed frequency is less than the expected frequency.
  • Greater than 2 and the observed frequency is greater than the expected frequency.

Here, in this case, the standardized residual exceeds +2 and tends to +3 which indicates that the predicted value is not in the allows bound of the regression model. Hence you should check the model once again. It may happen that the mentioned point is a rare one (probably one) in the entire data model, but if the number of these kinds of points is more, then you should check the linearity of the model once again.

Hope this answer has helped you.

Thanks !!


Related Solutions

Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error...
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error 9.4006 ANOVA df SS MS F Regression 1 2317.6 2317.6 26.226 Residual 6 530.23 88.372 Total 7 2847.9 Coefficients Standard Error t Stat P-value Intercept 45.897 5.5447 8.2776 0.0002 Number of Surgeries (x) 5.1951 1.0144 5.1211 0.0022 1. r = 0.90 strong positive correlation 2. y = 5.195 x + 45.897 , 3. r2 = 0.8138 , and 4. Se =  9.4006 5. Results of...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error 3.573206748 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.025113 2152.67504 168.601791 2.7119E-73 Residual 451 5758.280717 12.7678065 Total 454 12216.30583 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.250148858 0.359211364 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RBUK 0.025079378 0.023812698 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.713727515 0.042328316 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error 3.57320675 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.02511 2152.67504 168.601791 2.7119E-73 Residual 451 5758.28072 12.7678065 Total 454 12216.3058 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.2501489 0.35921136 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RUK 0.02507938 0.0238127 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.71372752 0.04232832 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 13.69067 Observations 1142 ANOVA df SS MS F Significance F Regression 1 8481.255 8481.255 45.2492 2.74E-11 Residual 1140 213675.2 187.4344 Total 1141 222156.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 40.19631 0.596741 67.35967 0 39.02547 41.36714 39.02547 41.36714 X Variable 1 7.31E-05 1.09E-05 6.726752 2.74E-11 5.18E-05 9.45E-05 5.18E-05 9.45E-05 Discuss the statistical significance of the model...
SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error 18.42647 Observations 1142 ANOVA df SS MS F Significance F Regression 1 72088.71 72088.71 212.3161 3.12E-44 Residual 1140 387069.6 339.5348 Total 1141 459158.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 26.35917 0.803163 32.8192 7.4E-167 24.78333 27.93501 24.78333 27.93501 X Variable 1 0.000213 1.46E-05 14.57107 3.12E-44 0.000184 0.000242 0.000184 0.000242 a. Write the reqression equation. Discuss the...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 36578.71 Observations 1142 ANOVA df SS MS F Significance F Regression 1 6.05E+10 6.05E+10 45.2492 2.74E-11 Residual 1140 1.53E+12 1.34E+09 Total 1141 1.59E+12 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 17779.38 3518.846 5.052617 5.07E-07 10875.24 24683.53 10875.24 24683.53 X Variable 1 522.0407 77.60665 6.726752 2.74E-11 369.7728 674.3086 369.7728 674.3086 Income using age Write the regression equation....
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247...
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247 Total Number Of Cases 12 Hamb Consump = 176.2709 - 106.6901 * Hamb Price + 4.5651 * Income (1,000s) - 12.1556 * Hot Dog Price ANOVA d.f. SS MS F p-level Regression 3. 3,560.58212 1,186.86071 658.549258 0. Residual 8. 14.41788 1.80224 Total 11. 3,575. Coefficients Standard Error LCL UCL t Stat p-level H0 (5%) rejected? Intercept 176.27093 45.28994 71.83215 280.709717 3.89206 0.0046 Yes Hamb...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 9.1970 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept -115.6768 Octane 1.5305 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 89.0000 1.4274 87.0000 2.0544 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and the...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted R Square 0.908 Standard Error 5.779 Observations 52 ANOVA df SS MS F Significance F Regression 4 16947.86487 4236.9662 126.8841 1.45976E-24 Residual 47 1569.442824 33.392401 Total 51 18517.30769 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 39.08190 15.31261 2.55227 0.014012 8.27693 69.88687 X-Price -7.37039 0.98942 -7.44921 1.71E-09 -9.36084 -5.37994 Y-Price -5.42813 0.33793 -16.06289 1.03E-20 -6.10796 -4.74831 Z-Price 4.05067 0.33949 11.93173 7.95E-16...
29. In multiple regression, the adjusted R-square can be interpreted as a. the percentage of variance...
29. In multiple regression, the adjusted R-square can be interpreted as a. the percentage of variance accounted for in the dependent variable by the set of independent variables b. the percentage of variance accounted for in the dependent variable by a single independent variable c. the strength of the relationship between the dependent variable and the set of independent variables d. the percentage of variance accounted for in the dependent variable by the set of independent variables minus an estimate...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT