Question

In: Statistics and Probability

Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error...

Using Excel:

Regression Statistics
Multiple R 0.9021
R- Square 0.8138
Adjusted R Square 0.7828
Standard Error 9.4006
ANOVA
df SS MS F
Regression 1 2317.6 2317.6 26.226
Residual 6 530.23 88.372
Total 7 2847.9
Coefficients Standard Error t Stat P-value
Intercept 45.897 5.5447 8.2776 0.0002
Number of Surgeries (x) 5.1951 1.0144 5.1211 0.0022

1. r = 0.90 strong positive correlation 2. y = 5.195 x + 45.897 , 3. r2 = 0.8138 , and 4. Se =  9.4006

5. Results of the Pearson correlation indicated that there was a significant positive association between age and number and surgeries with r = 0.90 . The results of the regression indicated the predictor explained 81% of the variance (R2 =0.81, F(1,6)= 26.2, p < 0.01).

Exercise 1: Use the sample data below to answer the following question(s). The paired data consist of the cost of regionally advertising (in thousands of dollars) a certain pharmaceutical drug and the number of new prescriptions written (in thousands).

Cost 9 2 3 4 2 5 9 10
Number 85 52 55 68 67 86 83 73
  1. Find the value of the linear correlation coefficient r.
  2. Find the equation of the regression line, letting Number of Surgeries be the independent (x) variable.
  3. Find the coefficient of determination.
  4. Find the standard error of estimate se.
  5. Report the result in APA format

Solutions

Expert Solution

we will solve it by using excel and the steps are

Enter the Data into excel

Click on Data tab

Click on Data Analysis

Select Regression

Select input Y Range as Range of dependent variable.

Select Input X Range as Range of independent variable

click on labels if your selecting data with labels

click on ok.

So this is the output of Regression in Excel.

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.7077
R Square 0.5009
Adjusted R Square 0.4177
Standard Error 2.5473
Observations 8.0000
ANOVA
df SS MS F Significance F
Regression 1.0000 39.0678 39.0678 6.0209 0.0495
Residual 6.0000 38.9322 6.4887
Total 7.0000 78.0000
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -7.2756 5.2839 -1.3769 0.2177 -20.2048 5.6536 -20.2048 5.6536
Number 0.1796 0.0732 2.4538 0.0495 0.0005 0.3587 0.0005 0.3587

1)the value of the linear correlation coefficient r = 0.7077

2) the equation of the regression line, letting Number of Surgeries be the independent (x) variable

Cost = -7.2756+0.1796Number of Surgeries

3)t he coefficient of determination.

R-square = 0.5009

4)

the standard error of estimate se = 2.5473


Related Solutions

SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error 3.573206748 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.025113 2152.67504 168.601791 2.7119E-73 Residual 451 5758.280717 12.7678065 Total 454 12216.30583 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.250148858 0.359211364 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RBUK 0.025079378 0.023812698 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.713727515 0.042328316 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.72707618 R Square 0.52863977 Adjusted R Square 0.52550434 Standard Error 3.57320675 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.02511 2152.67504 168.601791 2.7119E-73 Residual 451 5758.28072 12.7678065 Total 454 12216.3058 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.2501489 0.35921136 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RUK 0.02507938 0.0238127 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.71372752 0.04232832 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 13.69067 Observations 1142 ANOVA df SS MS F Significance F Regression 1 8481.255 8481.255 45.2492 2.74E-11 Residual 1140 213675.2 187.4344 Total 1141 222156.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 40.19631 0.596741 67.35967 0 39.02547 41.36714 39.02547 41.36714 X Variable 1 7.31E-05 1.09E-05 6.726752 2.74E-11 5.18E-05 9.45E-05 5.18E-05 9.45E-05 Discuss the statistical significance of the model...
SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.396235 R Square 0.157002 Adjusted R Square 0.156262 Standard Error 18.42647 Observations 1142 ANOVA df SS MS F Significance F Regression 1 72088.71 72088.71 212.3161 3.12E-44 Residual 1140 387069.6 339.5348 Total 1141 459158.4 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 26.35917 0.803163 32.8192 7.4E-167 24.78333 27.93501 24.78333 27.93501 X Variable 1 0.000213 1.46E-05 14.57107 3.12E-44 0.000184 0.000242 0.000184 0.000242 a. Write the reqression equation. Discuss the...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.195389 R Square 0.038177 Adjusted R Square 0.037333 Standard Error 36578.71 Observations 1142 ANOVA df SS MS F Significance F Regression 1 6.05E+10 6.05E+10 45.2492 2.74E-11 Residual 1140 1.53E+12 1.34E+09 Total 1141 1.59E+12 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 17779.38 3518.846 5.052617 5.07E-07 10875.24 24683.53 10875.24 24683.53 X Variable 1 522.0407 77.60665 6.726752 2.74E-11 369.7728 674.3086 369.7728 674.3086 Income using age Write the regression equation....
Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations...
Regression Statistics Multiple R 0.451216205 R Square 0.203596063 Adjusted R Square 0.190097692 Standard Error 0.051791629 Observations 61 ANOVA df SS MS F Significance F Regression 1 0.040458253 0.040458253 15.083009 0.000262577 Residual 59 0.158259997 0.002682373 Total 60 0.19871825 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.00987396 0.006785133 1.455234544 0.150904641 -0.00370306 0.023450979 -0.00370306 0.023450979 S&P 0.752212332 0.193685208 3.883684976 0.000262577 0.364649126 1.139775537 0.364649126 1.139775537 Current estimate given to us in the directions 1.07 RESIDUAL OUTPUT...
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247...
Linear Regression Regression Statistics R 0.99798 R Square 0.99597 Adjusted R Square 0.99445 Standard Error 1.34247 Total Number Of Cases 12 Hamb Consump = 176.2709 - 106.6901 * Hamb Price + 4.5651 * Income (1,000s) - 12.1556 * Hot Dog Price ANOVA d.f. SS MS F p-level Regression 3. 3,560.58212 1,186.86071 658.549258 0. Residual 8. 14.41788 1.80224 Total 11. 3,575. Coefficients Standard Error LCL UCL t Stat p-level H0 (5%) rejected? Intercept 176.27093 45.28994 71.83215 280.709717 3.89206 0.0046 Yes Hamb...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 9.1970 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept -115.6768 Octane 1.5305 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 89.0000 1.4274 87.0000 2.0544 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and the...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted R Square 0.908 Standard Error 5.779 Observations 52 ANOVA df SS MS F Significance F Regression 4 16947.86487 4236.9662 126.8841 1.45976E-24 Residual 47 1569.442824 33.392401 Total 51 18517.30769 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 39.08190 15.31261 2.55227 0.014012 8.27693 69.88687 X-Price -7.37039 0.98942 -7.44921 1.71E-09 -9.36084 -5.37994 Y-Price -5.42813 0.33793 -16.06289 1.03E-20 -6.10796 -4.74831 Z-Price 4.05067 0.33949 11.93173 7.95E-16...
29. In multiple regression, the adjusted R-square can be interpreted as a. the percentage of variance...
29. In multiple regression, the adjusted R-square can be interpreted as a. the percentage of variance accounted for in the dependent variable by the set of independent variables b. the percentage of variance accounted for in the dependent variable by a single independent variable c. the strength of the relationship between the dependent variable and the set of independent variables d. the percentage of variance accounted for in the dependent variable by the set of independent variables minus an estimate...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT