Question

In: Advanced Math

Solve y ' ' + 10 y ' + 26 y = 0 , y (...

Solve y ' ' + 10 y ' + 26 y = 0 , y ( 0 ) = 1 , y ' ( 0 ) = − 3

Solutions

Expert Solution


Related Solutions

Solve: y'''−7y''+8y'+16y=0 y(0)=1,  y'(0)=−3,  y''(0)=10y(0)=1,  y′(0)=-3,  y′′(0)=10 y(t)= ?
Solve: y'''−7y''+8y'+16y=0 y(0)=1,  y'(0)=−3,  y''(0)=10y(0)=1,  y′(0)=-3,  y′′(0)=10 y(t)= ?
solve for the second order initial value problem= y"-6y+8y=0 y(0)=3, y'(0)=10
solve for the second order initial value problem= y"-6y+8y=0 y(0)=3, y'(0)=10
Solve y'''-4y'=32xe2x-24x2 , y(0)=0 y'(0)=0 y''(0)=-1
Solve y'''-4y'=32xe2x-24x2 , y(0)=0 y'(0)=0 y''(0)=-1
Solve the IVP by applying the Laplace transform:y''+y=sqrt(2)*sin[sqrt(2)t]; y(0)=10, y'(0)=0
Solve the IVP by applying the Laplace transform:y''+y=sqrt(2)*sin[sqrt(2)t]; y(0)=10, y'(0)=0
Solve each of the following IVP’s: y'' - y' - 3y = 0, y(0) = 0,...
Solve each of the following IVP’s: y'' - y' - 3y = 0, y(0) = 0, y'(0) = -1   y'' + 4y' + 2y = 0, y(0) = 1, y'(0) = 0   y'' + 11y' + 30y = 0, y(0) = -2, y'(0) = 0 y'' + 3y' = 0, y(0) = 1, y'(0) = 0   y'' - 16y = 0, y(0) = 1, y'(0) = 2
Find the general solution and solve the IVP y''+y'-y=0, y(0)=2, y'(0)=0
Find the general solution and solve the IVP y''+y'-y=0, y(0)=2, y'(0)=0
solve the initial value problem Y" + 2Y' - Y = 0, Y(0)=0,Y'(0) = 2sqrt2
solve the initial value problem Y" + 2Y' - Y = 0, Y(0)=0,Y'(0) = 2sqrt2
y''' −2y' −4y = 0, y(0) = 6, y'(0) = 3, y''(0) = 22 solve the...
y''' −2y' −4y = 0, y(0) = 6, y'(0) = 3, y''(0) = 22 solve the initial value problem You would convert it to m^3-2m-4=0. You find the root (m=2) and use synthetic division to find the other roots. m^2+2m+2 is what you get. I am stuck on what to do next? y = 2e^(−x)*cosx−3e^(−x)*sinx + 4e^(2x) is the answer.
Solve the Following Equation: y'' + y' + y = a*sin(ω*t), y(0) = 0 , y'(0)...
Solve the Following Equation: y'' + y' + y = a*sin(ω*t), y(0) = 0 , y'(0) = 0 Thanks
a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0
  a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0 b) Solve using variation of parameters: y" -9y = x/e^3x
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT