Question

In: Math

Solve the IVP by applying the Laplace transform:y''+y=sqrt(2)*sin[sqrt(2)t]; y(0)=10, y'(0)=0

Solve the IVP by applying the Laplace transform:y''+y=sqrt(2)*sin[sqrt(2)t]; y(0)=10, y'(0)=0

Solutions

Expert Solution


Related Solutions

using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = -...
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = - 1 , i am stuck on the partial fraction decomposition step. please explain the decomposition clearly.
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve....
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve. Sketch the solution or use matlab to show the graph.
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t...
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t y(0)=0,y′(0)=0 Y(s)= ?    Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t). Use step(t-c) for the Heaviside function u(t−c) . y(t)= ?
solve y'' + 4y =6 sin (t);y(0) =6, y'(0)=0 using 1st laplace transforms, 2nd undertinend coefficent,...
solve y'' + 4y =6 sin (t);y(0) =6, y'(0)=0 using 1st laplace transforms, 2nd undertinend coefficent, and 3rd variation of parameters.
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Please draw the solution without solve the IVP y"+y=dirac function (t-pi/2) y(0)=0, y'(0) . (Label y(t)...
Please draw the solution without solve the IVP y"+y=dirac function (t-pi/2) y(0)=0, y'(0) . (Label y(t) and t number as well) I need a professional expert to answer this question. (be able to follow the comment) (Show the step for what you need to get for drawing this solution as well)
SOLVE the IVP: (D^2+1)y = e^t, y(0) = -1 and y'(0) = 1. Thank you.
SOLVE the IVP: (D^2+1)y = e^t, y(0) = -1 and y'(0) = 1. Thank you.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT