Question

In: Advanced Math

Solve the Following Equation: y'' + y' + y = a*sin(ω*t), y(0) = 0 , y'(0)...

Solve the Following Equation:

y'' + y' + y = a*sin(ω*t), y(0) = 0 , y'(0) = 0

Thanks

Solutions

Expert Solution


Related Solutions

Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Solve the equation below for y(t): y''+2y'-3y=8u(t-3): y(0) = 0; y'(0)=0
Solve the equation below for y(t): y''+2y'-3y=8u(t-3): y(0) = 0; y'(0)=0
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t...
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t y(0)=0,y′(0)=0 Y(s)= ?    Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t). Use step(t-c) for the Heaviside function u(t−c) . y(t)= ?
Solve the differential equation. y'' − 8y' + 20y = te^t, y(0) = 0, y'(0) =...
Solve the differential equation. y'' − 8y' + 20y = te^t, y(0) = 0, y'(0) = 0 (Answer using fractions)
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve differential equation: y'+y=sin(x)
Solve differential equation: y'+y=sin(x)
Solve the IVP by applying the Laplace transform:y''+y=sqrt(2)*sin[sqrt(2)t]; y(0)=10, y'(0)=0
Solve the IVP by applying the Laplace transform:y''+y=sqrt(2)*sin[sqrt(2)t]; y(0)=10, y'(0)=0
Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π...
Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π Part (a): Find the Cartesian equation of the curve by eliminating the parameter. Also, graph the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. Label any x and y intercepts. Part(b): Find the point (x,y) on the curve with tangent slope 1 and write the equation of the tangent line.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT