Question

In: Math

solve for the second order initial value problem= y"-6y+8y=0 y(0)=3, y'(0)=10

solve for the second order initial value problem= y"-6y+8y=0 y(0)=3, y'(0)=10

Solutions

Expert Solution


Related Solutions

Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
solve this equation y''-6y'+8y=1 when y(0)=1, y'(0)=7
solve this equation y''-6y'+8y=1 when y(0)=1, y'(0)=7
Solve the equation y'=5-8y with initial condition y'(0)=0
Solve the equation y'=5-8y with initial condition y'(0)=0
Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3...
Solve the initial value problem: y'' + y = cos(x) y(0) = 2 y'(0) = -3 y' being the first derivative of y(x), y'' being the second derivative, etc.
Solve the given initial-value problem. y'' + y = 0,    y(π/3) = 0,    y'(π/3) = 4
Solve the given initial-value problem. y'' + y = 0,    y(π/3) = 0,    y'(π/3) = 4
solve the given boundary value problem. y"+6y=24x, y(0)=0, y(1)+y'(1)=0
solve the given boundary value problem. y"+6y=24x, y(0)=0, y(1)+y'(1)=0
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value...
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value problem y′′ − 2√2y′ + 2y = 0, y(√2) = e2, y′(√2) = 2√2e2. Consider the second order linear equation t2y′′+2ty′−2y=0, t>0. (a) (1 pt) Show that y1(t) = t−2 is a solution. (b) (3 pt) Use the variation of parameters method to obtain a second solution and a general solution.
Use the Laplace transform to solve the given initial-value problem. y'' - 2y'' - 8y =...
Use the Laplace transform to solve the given initial-value problem. y'' - 2y'' - 8y = 2sin2t; y(0) = 2, y'(0) = 4
Second order Differential equation: Find the general solution to [ y'' + 6y' +8y = 3e^(-2x)...
Second order Differential equation: Find the general solution to [ y'' + 6y' +8y = 3e^(-2x) + 2x ] using annihilators method and undetermined coeficients.
Consider the initial value problem: y0 = 3 + x−y, y(0) = 1 (a) Solve it...
Consider the initial value problem: y0 = 3 + x−y, y(0) = 1 (a) Solve it analytically. (b) Solve it using Euler’s method using step size h = 0.1 and find an approximation to true solution at x = 0.3. (c) What is the error in the Euler’s method at x = 0.3
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT