Question

In: Advanced Math

y''' −2y' −4y = 0, y(0) = 6, y'(0) = 3, y''(0) = 22 solve the...

y''' −2y' −4y = 0, y(0) = 6, y'(0) = 3, y''(0) = 22

solve the initial value problem

You would convert it to m^3-2m-4=0. You find the root (m=2) and use synthetic division to find the other roots. m^2+2m+2 is what you get. I am stuck on what to do next?

y = 2e^(−x)*cosx−3e^(−x)*sinx + 4e^(2x) is the answer.

Solutions

Expert Solution


Related Solutions

Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Question : y''=4y'+8y=0 , (y''-4y'+13y)^2=0 , (y''+2y'+2y)^2=0 , y''-6y'+13y=0,y(0)=3 , y'(0)=13 , 2y''-6y'+17y=0,y(0)=2, y'(0)=13
Question : y''=4y'+8y=0 , (y''-4y'+13y)^2=0 , (y''+2y'+2y)^2=0 , y''-6y'+13y=0,y(0)=3 , y'(0)=13 , 2y''-6y'+17y=0,y(0)=2, y'(0)=13
solve using variation of parameters. y'' + 4y = 6 sint; y(0)=6, y'(0) = 0
solve using variation of parameters. y'' + 4y = 6 sint; y(0)=6, y'(0) = 0
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0)...
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0) = 0. Solve without the Laplace Transform, first, and then with the Laplace Transform.
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the differential equation y''+y'-2y=3, y(0)=2, y'(0) = -1
Solve the differential equation y''+y'-2y=3, y(0)=2, y'(0) = -1
Again considering y'' + 4y' + 3y = 0: (a) Solve the IVP y'' + 4y'...
Again considering y'' + 4y' + 3y = 0: (a) Solve the IVP y'' + 4y' + 3y = 0; y(0) = 1, y'(0) = α where α > 0. (b) Determine the coordinates (tm,ym) of the maximum point of the solution as a function of α. (c) Determine the behavior of tm and ym as α →∞.
Differential Equations Use a series solution to solve the IVP . y′′−4y= 0 y(0) = 3...
Differential Equations Use a series solution to solve the IVP . y′′−4y= 0 y(0) = 3 y′(0) = 5. (Your answer will use one or more series.)
solve y'' + 4y =6 sin (t);y(0) =6, y'(0)=0 using 1st laplace transforms, 2nd undertinend coefficent,...
solve y'' + 4y =6 sin (t);y(0) =6, y'(0)=0 using 1st laplace transforms, 2nd undertinend coefficent, and 3rd variation of parameters.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT