Question

In: Electrical Engineering

1. A three-phase overhead line 200 km long has resistance= 0.16 Ω/km an conductor diameter of...

1. A three-phase overhead line 200 km long has resistance= 0.16 Ω/km an conductor diameter of 2 cm with spacing of 4 m. Find: (a) the ABCD constants (b) the Vs and Is. When the line is delivering full load of 50 MW at 132 kV and 0.8 lagging pf, (c) efficiency of transmission line.

2. A three-phase voltage of 11 kV is applied to a line having R = 10 Ω and X = 12 Ω per conductor. At the end of the line is a balanced load of P kW at a leading power factor. At what value of P is the voltage regulation zero when the power factor of the load is (a) 0.707, (b) 0.85?

3. The generalized circuit constants of a transmission line are A - 0.93+j0.0 1 6 B=20+ j14 0 The load at the receiving-end is 60 MVA, 50 Hz 0.8 power factor lagging. The voltage at the supply end is 22O kV. Calculate the load voltage.

Solutions

Expert Solution


Related Solutions

345 kV, 50 Hz, 3-phase transmission line is 100 km long. The resistance is 0.048 Ω/km...
345 kV, 50 Hz, 3-phase transmission line is 100 km long. The resistance is 0.048 Ω/km and the inductance is 1,24 mH/km. The shunt capacitance is 0.0174 μF/km. The receiving end load is 216 MW with 0.8 power factor lagging at 325 kV. (a) Compute ABCD parameters using π equivalent circuit (b) Sending end voltage VS, (c) Sending end current IS, (d) Efficiency
A 3-phase line has a resistance of 9 Ω/phase and a reactance of 23 Ω/phase. The...
A 3-phase line has a resistance of 9 Ω/phase and a reactance of 23 Ω/phase. The load at the receiving end is 130 MW at 0.8 p. f. lagging. Find the capacity of the synchronous condenser required to be connected at the receiving end to maintain the voltage at both ends of the transmission line at 132 KV.
A three-phase line has an impedance of 1 + j2 Ω per phase. The line feeds...
A three-phase line has an impedance of 1 + j2 Ω per phase. The line feeds two balanced three-phase loads that are connected in parallel. The first load is Y-connected and has an impedance of 20+j40 Ω per phase. The second load is ∆-connected and has an impedance of 30-j60 Ω per phase. The line-to-line voltage at the load end of the line is 415V. Taking the phase voltage Va as reference, determine: a) The total current per phase from...
(a) A steel power transmission line has a resistance of 0.0430 Ω/km. What is its mass...
(a) A steel power transmission line has a resistance of 0.0430 Ω/km. What is its mass per kilometer (in kg/km)? (Assume the density of steel is 7.8 ✕ 103 kg/m3.)   ________ kg/km (b) What is the mass per kilometer (in kg/km) of an iron line having the same resistance? (Assume the density of iron is 7.8 ✕ 103 kg/m3.) _______ kg/km
A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊...
A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊ /km and a shunt admittance y = 5.105 x 10-6 < 90 ̊ S/km. The load at the receiving end is 135 MW at unity power factor and 215 kV. Determine the voltage, current, real and reactive power at the sending end and the percent voltage regulation of the line.
The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05...
The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05 + j0.1  / km. A load with a power coefficient of 0.8 forward is fed from the end of the line. Line and end of line of energy transmission line According to the intention to keep the voltage between phases constant at 154 kV; a) Active and reactive power values ​​drawn from the beginning and end of the line, b) Calculate the lost...
You want to produce three 1.00-mm-diameter cylindrical wires, each with a resistance of 5.00 Ω at...
You want to produce three 1.00-mm-diameter cylindrical wires, each with a resistance of 5.00 Ω at room temperature. One wire is gold, one is copper, and one is aluminum. Refer to Table 25.1 in the textbook for the resistivity values. Part A What will be the length of the gold wire? Part B What will be the length of the copper wire? Part C What will be the length of the aluminum wire? Part D Gold has a density of...
A shunt motor has a supply voltage of 200 V and armature resistance of 3.6 Ω....
A shunt motor has a supply voltage of 200 V and armature resistance of 3.6 Ω. At certain torque the motor run at speed = 1200 R.P.M and take a current of 10 Amp from the supply and its field current is 0.5 Amp. Find starting torque, no-load speed, and the load torque when the current supplied by the supply is 5 Amp.
1-What is the resistance of a 5km long copper wire with a diameter of 4mm? a....
1-What is the resistance of a 5km long copper wire with a diameter of 4mm? a. 1.65 ohms b. 0.0015 ohms c. .0065 ohms d. 6.7 ohms 2- three 4mF capacitor are connected in series across a 12 V battery. The total charges stored by this compination of capacitor is A. 24 mC B. 16 mC C. 48 mC D. 144 mC E. None of the above 3. What would be the energy stored in the capacitor in the previous...
A 35 km, 34.5-kV, 60-Hz three phase line has a positive-sequence series impedance z = 0.10...
A 35 km, 34.5-kV, 60-Hz three phase line has a positive-sequence series impedance z = 0.10 + j0.40 Ohms/km. The load at the receiving end absorbs 15 MVA at 33 kV. Assuming a short line, calculate: (a) the ABCD parameters, (b) the sending-end voltage for a load power factor of 0.95 lagging, (c) the sending-end voltage for the a load power factor of 0.9 leading. (d) For which case is the sending-end voltage higher?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT