Question

In: Electrical Engineering

A three-phase line has an impedance of 1 + j2 Ω per phase. The line feeds...

A three-phase line has an impedance of 1 + j2 Ω per phase. The line feeds two balanced three-phase loads that are connected in parallel. The first load is Y-connected and has an impedance of 20+j40 Ω per phase. The second load is ∆-connected and has an impedance of 30-j60 Ω per phase. The line-to-line voltage at the load end of the line is 415V. Taking the phase voltage Va as reference, determine: a) The total current per phase from the source end .b) The magnitude of the line voltage at the source end of the line c) The total 3-phase real and reactive powers absorbed by each load . d) The total 3-phase real and reactive power losses in the line. e) The real power and reactive power supplied at the source end of the line. f) If the second load is now connected in Y-connection with the same impedance of 30-j60 Ω per phase, what would be the current per phase supplied by the source

Solutions

Expert Solution

ANSWERS:

(a) Isource=8.63665425<33.56912 amps

(b)(Vsource)Line=412.1892307 volts

(c)P1=1722.25136 watt,Q1=3444.499 Var,P2=3444.499 watts,Q2=68888.999356 Var

(d)PLoss=223.77538 watt,QLoss=447.5507798 Var

(e)PSource=5395.502823 watt

QSource=2984.6238 Var

(f) (ISource)2=11.8680<42.1870 amps

Hai if you find my answer suitable kindly give a thumbs up.Good day to you and thanks.


Related Solutions

A 3-phase line has a resistance of 9 Ω/phase and a reactance of 23 Ω/phase. The...
A 3-phase line has a resistance of 9 Ω/phase and a reactance of 23 Ω/phase. The load at the receiving end is 130 MW at 0.8 p. f. lagging. Find the capacity of the synchronous condenser required to be connected at the receiving end to maintain the voltage at both ends of the transmission line at 132 KV.
The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05...
The impedance of a three-phase, 50 km long power transmission line per unit length is 0.05 + j0.1  / km. A load with a power coefficient of 0.8 forward is fed from the end of the line. Line and end of line of energy transmission line According to the intention to keep the voltage between phases constant at 154 kV; a) Active and reactive power values ​​drawn from the beginning and end of the line, b) Calculate the lost...
A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊...
A 60-Hz, 230-km, three phase overhead transmission line has a series impedance z = 0.85<78.04 ̊ /km and a shunt admittance y = 5.105 x 10-6 < 90 ̊ S/km. The load at the receiving end is 135 MW at unity power factor and 215 kV. Determine the voltage, current, real and reactive power at the sending end and the percent voltage regulation of the line.
A 35 km, 34.5-kV, 60-Hz three phase line has a positive-sequence series impedance z = 0.10...
A 35 km, 34.5-kV, 60-Hz three phase line has a positive-sequence series impedance z = 0.10 + j0.40 Ohms/km. The load at the receiving end absorbs 15 MVA at 33 kV. Assuming a short line, calculate: (a) the ABCD parameters, (b) the sending-end voltage for a load power factor of 0.95 lagging, (c) the sending-end voltage for the a load power factor of 0.9 leading. (d) For which case is the sending-end voltage higher?
A 3-phase 60 HZ , 200km transmission line has a series impedance of z= 0.10 +...
A 3-phase 60 HZ , 200km transmission line has a series impedance of z= 0.10 + j0.35 Ω/km and a capacitive reactance of 0.2 x 10 6 Ω-km. At the receiving end, the line delivers 250 MW @230/30θ kV and 0.95 lagging power factor. Determine a) The line impedance and shunt admittance b) The A, B, C , D parameters c) Sending end complex power and power factor d) Is the PF is leading or lagging e) Voltage regulation for...
An induction machine has four poles and is powered by two three-phase sources. The first feeds...
An induction machine has four poles and is powered by two three-phase sources. The first feeds the stator at 60 Hz and the second feeds the rotor at 180 Hz. Knowing that the rotor rotates in the same direction as the stator field, we ask: a) Does the machine work as a brake, motor or generator? b) What is the slip value? c) What is the angular speed of the rotating field of the rotor in relation to the stator?...
Three balanced 3-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced 3-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 400 + j300 ? per phase, load 2 is ?-connected with an impedance of 2400 – j1800 ? per phase, and load 3 is absorbing 172.8 + j2203.2 kVA. The loads are fed from a set of distribution lines with an impedance of 2 + j16 ? per line. The magnitude of the line-to-neutral voltage at the load end of the line is 24?3...
In a three-phase circuit the balanced delta load of (36 +j54) ohms is fed by impedance...
In a three-phase circuit the balanced delta load of (36 +j54) ohms is fed by impedance conductors (5 +j70) ohms. If the generator voltage is 120 V angle 0° phase A, calculate a) the bc voltage on the load, b) the powers in the conductors, c) the bc voltage of the delta load and d) the power delta on the load.
Q4- A 480V, 50Hz, 20KVA Y-connected eight-pole synchronous generator has a per-phase synchronous impedance of 0.15+??1.1...
Q4- A 480V, 50Hz, 20KVA Y-connected eight-pole synchronous generator has a per-phase synchronous impedance of 0.15+??1.1 ?. The total mechanical and stray losses are 1.5kW. The core losses are neglected. Assume that the magnetization curve of the generator is linear. If the generator operates at full load at a unity power factor, calculate the following: a.The speed of rotation of the generator at full load. b.The voltage regulation of the generator. c.The developed torque on the shaft of the generator....
A balanced three-phase generator delivers 6.3 kW to a delta-connected load with impedance 13 - j23.4...
A balanced three-phase generator delivers 6.3 kW to a delta-connected load with impedance 13 - j23.4 Ω per phase. The magnitude of the line current ILis:
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT