Questions
6. Provide a recommendation to Kimishima on how Nintendo should formulate its international management strategy to...

6. Provide a recommendation to Kimishima on how Nintendo should formulate its international management strategy to compete successfully in the gaming industry in the next three to five year?

In: Operations Management

Discuss the global impact of cybercrime and explain how some international and national groups are fighting...

Discuss the global impact of cybercrime and explain how some international and national groups are fighting it.

In: Operations Management

Explain the purpose, objectives, and required resources for conducting a compensation analysis. Describe internal and external...

Explain the purpose, objectives, and required resources for conducting a compensation analysis. Describe internal and external benchmarking approaches, and explain why an HR professional should include both approaches in a compensation analysis.

In: Operations Management

Identify the major labor relations laws in the United States, and the rationale for the implementation...

Identify the major labor relations laws in the United States, and the rationale for the implementation of each law. How are U.S. labor laws similar or different to labor relations laws in different countries globally?

In: Operations Management

What are the primary steps in using multi-voting in a team environment to identify priorities or...

What are the primary steps in using multi-voting in a team environment to identify priorities or narrow down options from a list of ideas?

In: Operations Management

e parts of the introduction of a business report? How do they differ from those found...

e parts of the introduction of a business report? How do they differ from those found in an abstract of a peer-reviewed journal article? How can you grab the reader’s attention and make them pay attention to the rest of the report?

In: Operations Management

Evaluate best organizational constructs to support an IT framework that is a “brick and click” B2B...

Evaluate best organizational constructs to support an IT framework that is a “brick and click” B2B industrial global manufacturer of automotive parts. Critique what software will support both the online parts business and the traditional distribution selling channel business. Compare both organizational concepts outlining and assessing the installation differences and provide what aspects of each business model can be shared, and unique to the differing methods of sale. Evaluate the customer service software needed to support both operations and specifically choose what aspects of each environment are critically necessary to provide best practice. Assess the hardware and software characteristics of each business model platform and recommend most economical and effective methods to provide 24/7 global operations demands. Recommend what communications systems, security, manpower, contingency, and performance aspects needed to operate both business models. Predict the most important skill sets needed to organize and operate the configured IT installation and provide comparisons between both business models in the creation and on going evolution and growth of each business. Project the future critical needs of each business model and what IT, organization, and strategies will be needed to assure best service quality highlighting what service quality dimensions are most important in the created IT organization created.

In: Operations Management

Inventory records must be verified through a continuing audit. The method of doing this is known...

Inventory records must be verified through a continuing audit. The method of doing this is known as

physical inventory.
inventory management.
inventory minimization.
cycle counting.
None of the above

In: Operations Management

Dealeo Foods Inc. purchases vitamins from a supplier abroad. The invoices received by Dealeo are denominated...

Dealeo Foods Inc. purchases vitamins from a supplier abroad. The invoices received by Dealeo are denominated in the foreign currency. Dealeo understands that fluctuations in foreign currency exchange rates may adversely affect the company’s earnings. The CFO of Dealeo wants you to investigate derivative instruments and determine whether or not the use of a foreign currency forward contract or foreign currency options is best to hedge the company’s exposure to foreign currency exchange risk.

REQUIRED:

Suppose you chosed any country other than the US...

1. Draft a memo to explain to the CFO the advantages and disadvantages of using a foreign currency forward contract and foreign currency options for hedging. Based on the history of the exchange rates, how might these options impact Dealeo?

2. Make a recommendation on the hedging instrument that you believe the company should use. Justify/support your recommendation.

NOTE: Please cite any sources used, FASB Codification and any other sources.

In: Operations Management

Why the Monte Carlo Method is so important today Article ID Dirk P. Kroese The University...

Why the Monte Carlo Method is so important today

Article ID

Dirk P. Kroese The University of Queensland Tim Brereton Ulm University Thomas Taimre The University of Queensland Zdravko I. Botev The University of New South Wales

Keywords: Monte Carlo method, simulation, MCMC, estimation, randomized optimization

Abstract: Since the beginning of electronic computing, people have been interested in carrying out random experiments on a computer. Such Monte Carlo techniques are now an essential ingredient in many quantitative investigations.

Why is the Monte Carlo method (MCM) so important today?

This article explores the reasons why the MCM has evolved from a “last resort” solution to a leading methodology that permeates much of contemporary science, finance, and engineering. Uses of the MCM Monte Carlo simulation is, in essence, the generation of random objects or processes by means of a computer. These objects could arise “naturally” as part of the modeling of a real-life system, such as a complex road network, the transport of neutrons, or the evolution of the stock market. In many cases, however, the random objects in Monte Carlo techniques are introduced “artificially” in order to solve purely deterministic problems. In this case the MCM simply involves random sampling from certain probability distributions. In either the natural or artificial setting of Monte Carlo techniques the idea is to repeat the experiment many times (or use a sufficiently long simulation run) to obtain many quantities of interest using the Law of Large Numbers and other methods of statistical inference. Here are some typical uses of the MCM: 1 Sampling. Here the objective is to gather information about a random object by observing many realizations of it. An example is simulation modeling, where a random process mimics the behavior of some real-life system, such as a production line or telecommunications network. Another example is found in Bayesian statistics, where Markov chain Monte Carlo (MCMC) is often used to sample from a posterior distribution. Estimation. In this case the emphasis is on estimating certain numerical quantities related to a simulation model. An example in the natural setting of Monte Carlo techniques is the estimation of the expected throughput in a production line. An example in the artificial context is the evaluation of multi-dimensional integrals via Monte Carlo techniques by writing the integral as the expectation of a random variable. Optimization. The MCM is a powerful tool for the optimization of complicated objective functions. In many applications these functions are deterministic and randomness is introduced artificially in order to more efficiently search the domain of the objective function. Monte Carlo techniques are also used to optimize noisy functions, where the function itself is random — for example, the result of a Monte Carlo simulation. Why the MCM? Why are Monte Carlo techniques so popular today? We identify a number of reasons. Easy and Efficient. Monte Carlo algorithms tend to be simple, flexible, and scalable. When applied to physical systems, Monte Carlo techniques can reduce complex models to a set of basic events and interactions, opening the possibility to encode model behavior through a set of rules which can be efficiently implemented on a computer. This in turn allows much more general models to be implemented and studied on a computer than is possible using analytic methods. These implementations tend to be highly scalable. For example, the complexity of a simulation program for a machine repair facility would typically not depend on the number of machines or repairers involved. Finally, Monte Carlo algorithms are eminently parallelizabe, in particular when various parts can be run independently. This allows the parts to be run on different computers and/or processors, therefore significantly reducing the computation time. Randomness as a Strength. The inherent randomness of the MCM is not only essential for the simulation of real-life random systems, it is also of great benefit for deterministic numerical computation. For example, when employed for randomized optimization, the randomness permits stochastic algorithms to naturally escape local optima — enabling better exploration of the search space — a quality which is not usually shared by their deterministic counterparts. Insight into Randomness. The MCM has great didactic value as a vehicle for exploring and understanding the behavior of random systems and data. Indeed we feel 2 that an essential ingredient for properly understanding probability and statistics is to actually carry out random experiments on a computer and observe the outcomes of these experiments — that is, to use Monte Carlo simulation [30]. In addition, modern statistics increasingly relies on computational tools such as resampling and MCMC to analyze very large and/or high dimensional data sets. Theoretical Justification. There is a vast (and rapidly growing) body of mathematical and statistical knowledge underpinning Monte Carlo techniques, allowing, for example, precise statements on the accuracy of a given Monte Carlo estimator (for example, square-root convergence) or the efficiency of Monte Carlo algorithms. Much of the current-day research in Monte Carlo techniques is devoted to finding improved sets of rules and/or encodings of events to boost computational efficiency for difficult sampling, estimation, and optimization problems. Application Areas Many quantitative problems in science, engineering, and finance are nowadays solved via Monte Carlo techniques. We list some important areas of application. • Industrial Engineering and Operations Research. This is one of the main application areas of simulation modeling. Typical applications involve the simulation of inventory processes, job scheduling, vehicle routing, queueing networks, and reliability systems. See, for example, [14, 15, 33, 47]. An important part of Operations Research is Mathematical Programming (mathematical optimization), and here Monte Carlo techniques have proven very useful for providing optimal design, scheduling, and control of industrial systems, as well offering new approaches to solve classical optimization problems such as the traveling salesman problem, the quadratic assignment problem, and the satisfiability problem [32, 46]. The MCM is also used increasingly in the design and control of autonomous machines and robots [7, 29]. • Physical Processes and Structures. The direct simulation of the process of neutron transport [39, 40] was the first application of the MCM in the modern era, and Monte Carlo techniques continue to be important for the simulation of physical processes (for example, [34, 49]). In chemistry, the study of chemical kinetics by means of stochastic simulation methods came to the fore in the 1970’s [22, 23]. In addition to classical transport problems, Monte Carlo techniques have enabled the simulation of photon transport through biological tissue — a complicated inhomogeneous multi-layered structure with scattering and absorption [53]. Monte Carlo techniques now play an important role in materials science, where they are used in the development and analysis of new materials and structures, such as organic LEDs [2, 38], organic solar cells [50] and Lithium-Ion batteries [52]. In particular, Monte Carlo techniques play a key role in virtual materials design, where experimental data is used to produce stochasti materials. Realizations of these materials can then be simulated and numerical experiments can be performed on them. The physical development and analysis of new materials is often very expensive and time consuming. The virtual materials design approach allows for the generation of more data than can easily be obtained from physical experiments and also allows for the virtual production and study of materials using many different production parameters. • Random Graphs and Combinatorial Structures. From a more mathematical and probabilistic point of view, Monte Carlo techniques have proven to be very effective in studying the properties of random structures and graphs that arise in statistical physics, probability theory, and computer science. The classical models of ferromagnetism, the Ising model and the Potts model, are examples of these random structures, where a common problem is the estimation of the partition function; see, for example, [51]. Monte Carlo techniques also play a key role in the study of percolation theory, which lies at the intersection of probability theory and statistical physics. Monte Carlo techniques have made possible the identification of such important quantities as the critical exponents in many percolation models long before these results have been obtained theoretically (see, for example, [16], as an early example of work in this area). A good introduction to research in this field can be found in [26]. In computer science, one problem may be to determine the number of routes in a travelling salesman problem which have “length” less than a certain number — or else state that there are none. The computational complexity class for such problems is known as #P. In particular, solving a problem in this class is at least as difficult as solving the corresponding problem. Randomized algorithms have seen considerable success in tackling these difficult computational problems — see for example [27, 35, 41, 42, 48]. • Economics and Finance. As financial products continue to grow in complexity, Monte Carlo techniques have become increasingly important tools for analyzing them. The MCM is not only used to price financial instruments, but also plays a critical role in risk analysis. The use of Monte Carlo techniques in financial option pricing was popularized in [3]. These techniques are particularly effective in solving problems involving a number of different sources of uncertainty (for example, pricing basket options, which are based on a portfolio of stocks). Recently, there have been some significant advances in Monte Carlo techniques for stochastic differential equations, which are used to model many financial time series — see, in particular, [20] and subsequent papers. The MCM has also proved particularly useful in the analysis of the risk of large portfolios of financial products (such as mortgages), see [37]. A great strength of Monte Carlo techniques for risk analysis is that they can be easily used to run scenario analysis — that is, they can be used to compute risk outcomes under a number of different model assumptions. A classic reference for Monte Carlo techniques in finance is [24]. Some more recent work is mentioned in [19]. 4 • Computational Statistics. MCM has dramatically changed the way in which Statistics is used in today’s analysis of data. The ever increasing complexity of data (“big data”) requires radically different statistical models and analysis techniques from those that were used 20–100 years ago. By using Monte Carlo techniques, the statistician is no longer restricted to use basic (and often inappropriate) models to describe data. Now any probabilistic model that can be simulated on a computer can serve as the basis for a statistical analysis. This Monte Carlo revolution has had impact in both Bayesian and frequentist statistics. In particular, in classical frequentist statistics, Monte Carlo methods are often referred to as resampling techniques. An important example is the well-known bootstrap method [13], where various statistical quantities such as p-values for statistical tests and confidence intervals can simply be determined by simulation without the need of a sophisticated analysis of the underlying probability distributions; see, for example, [30] for simple applications. The impact of MCMC sampling methods on Bayesian statistics has been profound. MCMC techniques originated in statistical physics [40], but were not widely adopted by the statistical community until the publication of the seminal paper [17]. MCMC samplers construct a Markov process which converges in distribution to a desired high-dimensional density. This convergence in distribution justifies using a finite run of the Markov process as an approximate random realization from the target density. The MCMC approach has rapidly gained popularity as a versatile heuristic approximation, partly due to its simple computer implementation and trade-off between computational cost and accuracy; namely, the longer one runs the Markov process, the better the approximation. Nowadays, MCMC methods are indispensable for analyzing posterior distributions for inference and model selection; see [21] and [44]. A recent monograph on the topic is [4]. The Future of MCM There are many avenues relating to the MCM which warrant greater study. We elaborate on those which we find particularly relevant today. • Parallel Computing. Most Monte Carlo techniques have evolved directly from methods developed in the early years of computing. These methods were designed for machines with a single (and at that time, powerful) processor. Modern high performance computing, however, is increasingly shifting towards the use of many processors running in parallel. While many Monte Carlo algorithms are inherently parallelizabe, others cannot be easily adapted to this new computing paradigm. As it stands, relatively little work has been done to develop Monte Carlo techniques that perform efficiently in the parallel processing framework. In addition, as parallel processing continues to become more important, it may become necessary to reconsider the efficacy of algorithms that are now considered state of the 5 art but that are not easily parallelizabe. A related issue is the development of effective random number generation techniques for parallel computing. • Non-asymptotic Error Analysis. Traditional theoretical analysis of Monte Carlo estimators has focused on their performance in asymptotic settings (for example, as the sample size grows to infinity or as a system parameter is allowed to become very large or very small). Although these approaches have yielded valuable insight into the theoretical properties of Monte Carlo estimators, they often fail to characterize their performance in practice. This is because many real world applications of Monte Carlo techniques are in situations that are far from “asymptotic”. While there have been some attempts to characterize the non-asymptotic performance of Monte Carlo algorithms, we feel that much work remains to be done. • Adaptive Monte Carlo Algorithms. Many Monte Carlo algorithms are reflexive in the sense that they use their own random output to change their behavior. Examples of these algorithms include most genetic algorithms and the cross-entropy method. These algorithms perform very well in solving many complicated optimization and estimation problems. However, the theoretical properties of these estimators are often hard or impossible (using current mathematical tools) to study. While some progress has been made in this regard [8, 25, 36], many open problems remain. • Improved Simulation of Spatial Processes An area of Monte Carlo simulation that is relatively undeveloped is the simulation of spatial processes. Many spatial processes lack features such as independent increments and stationarity that make simulation straightforward. In addition, when simulating spatial processes, it is often the process itself which is of interest, rather than a functional of it. This makes the use of approximations more problematic. The current state of the art for simulating many spatial processes is based on MCMC techniques. The convergence of MCMC samplers is difficult to establish (unless using often unwieldy perfect simulation techniques) and it takes a very large simulation run to produce samples that are sufficiently “independent” of one another. A major breakthrough would be the development of more efficient techniques to generate realizations of these processes. • Rare Events. The simulation of rare events is difficult for the very reason that the events do not show up often in a typical simulation run. Rare-events occur naturally in problems such as estimating high-dimensional integrals or finding rare objects in large search spaces; see, for example, [31, 46]. By using wellknown variance reduction techniques such as importance sampling or splitting it is possible to dramatically increase the efficiency in estimating rare event probabilities; see [32, Chapter 9] for an overview. The theory of large deviations [5] and adaptive estimation methods [6, 9, 46] give some insights into how the system behaves under a rare event, but simulating a system conditional on a rare event occurring is a difficult and interesting problem, which deserves much more 6 attention. As an extreme example, it could be argued that the laws of physics are conditional on the occurrence of the rare event that human beings exist (or on a rare event that is still to happen!). • Quasi Monte Carlo. The adaption of Monte Carlo techniques for use with quasi-random number generators remains attractive — in particular, for multi-dimensional integration problems — due to their faster rate of convergence than traditional techniques. While there has been significant work in this area [12, 11, 43], the wholesale replacement of random number generators with quasi-random counterparts can lead to difficulties, for example the under- or over-sampling of the sample space via inverse-transform techniques. Conclusion The MCM continues to be one of the most useful approaches to scientific computing due to its simplicity and general applicability. The next generation of Monte Carlo techniques will provide important tools for solving ever more complex estimation and optimisation problems in engineering, finance, statistics, mathematics, computer science, and the physical and life sciences.

Why the Monte Carlo Method is so important today” uploaded to the homework. Please write a one page summary of this article. Make sure that you have your reflections at the end of your review of the article. Have your references

In: Operations Management

While referring to the Consumer Marketing Channels diagram, use a consumer product and examples of retailers...

While referring to the Consumer Marketing Channels diagram, use a consumer product and examples of retailers and wholesalers, to give an example of each of the four potential distribution channels shown in the diagram. Discuss the role played by each of the channel members. please write the reference from where you pick the informaion

In: Operations Management

I have to do a thesis: Assessing the factors affecting the working motivation of officers in...

I have to do a thesis: Assessing the factors affecting the working motivation of officers in state administrative agencies

Can you give me: a questionnaire to do survey ( questions corresponding to each factors)

In: Operations Management

On this short handbook, Epictetus says, " Remember, what a desire proposes is that you gain...

On this short handbook, Epictetus says, " Remember, what a desire proposes is that you gain what you desire, and what an aversion proposes is that you not all into what you averse to. Someone who fails to get what he desires is unfortunate, while someone who all’s into what he is averse to has met misfortune". Does Epictetus try to tell the audience that our desires will come true if they're meant to be, if they're not is due to be unfortunate, and someone who suffers or falls into aversion is suffering a misfortune? So then, would it be that he's dictating that whatever fate and destiny has set for us is meant to be, and that our desires are mere feelings from which if we're lucky we get them, if not we are simply unfortunate?

In: Operations Management

From chapter 11- Revisit the world of business: Despite the differences in Gap-owned Banana Republic stores...

From chapter 11- Revisit the world of business: Despite the differences in Gap-owned Banana Republic stores today, what are similarities the modern retailer shares with its initial stores?

In: Operations Management

From Chapter 11 Assignment- Revisit the world of Business How did marketing contribute toward creating the...

From Chapter 11 Assignment- Revisit the world of Business How did marketing contribute toward creating the successful Banana Republic brand?

In: Operations Management