In: Advanced Math
Let T,S : V → W be two linear transformations, and suppose B1 = {v1,...,vn} andB2 = {w1,...,wm} are bases of V and W, respectively.
(c) Show that the vector spaces L(V,W) and Matm×n(F) are isomorphic. (Hint: the function MB1,B2 : L(V,W) → Matm×n(F) is linear by (a) and (b). Show that it is a bijection. A linear transformation is uniquely specified by its action on a basis.)
need clearly proof