Question

In: Advanced Math

Let W be an inner product space and v1, . . . , vn a basis...

Let W be an inner product space and v1, . . . , vn a basis of V . Show that
<S, T> = <Sv1, T v1> + . . . + <Svn, T vn> for S, T ∈ L(V, W) is an inner product on L(V, W).

Solutions

Expert Solution


Related Solutions

Let T,S : V → W be two linear transformations, and suppose B1 = {v1,...,vn} andB2...
Let T,S : V → W be two linear transformations, and suppose B1 = {v1,...,vn} andB2 = {w1,...,wm} are bases of V and W, respectively. (c) Show that the vector spaces L(V,W) and Matm×n(F) are isomorphic. (Hint: the function MB1,B2 : L(V,W) → Matm×n(F) is linear by (a) and (b). Show that it is a bijection. A linear transformation is uniquely specified by its action on a basis.) need clearly proof
5. Prove the Following: a. Let {v1, . . . , vn} be a finite collection...
5. Prove the Following: a. Let {v1, . . . , vn} be a finite collection of vectors in a vector space V and suppose that it is not a linearly independent set. i. Show that one can find a vector w ∈ {v1, . . . , vn} such that w ∈ Span(S) for S := {v1, . . . , vn} \ {w}. Conclude that Span(S) = Span(v1, . . . , vn). ii. Suppose T ⊂ {v1,...
Vector v=(9,0,2) is vector from R3 space. Consider standard inner product in R3. Let W be...
Vector v=(9,0,2) is vector from R3 space. Consider standard inner product in R3. Let W be a subspace in R3 span by u = (9,2,0) and w=(9/2,0,2). a) Does V belong to W? show explanation b) find orthonormal basis in W. Show work c) find projection of v onto W( he best approximation of v with elements of w) d) find the distance between projection and vector v
In each case, check that { v1,...vn} is a basis for R^n, and express the given...
In each case, check that { v1,...vn} is a basis for R^n, and express the given vector b as a linear combination of the basis vectors. (a). v1=(2,3), v2=(3,5). b=(3,4) (b) v1=(1,0,3), v2=(1,2,2), v3=(1,3,2). b=(1,1,2) (c) v1=(1,0,1), v2=(1,1,2), v3=(1,1,1). b=(3,0,1)
1. Let v1, . . . , vn be nonzero vectors such that each vi+1 has...
1. Let v1, . . . , vn be nonzero vectors such that each vi+1 has more leading 0s than vi . Show that vectors v1, . . . , vn are linearly independent.
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
Let W be a subspace of R^n and suppose that v1,v2,w1,w2,w3 are vectors in W. Suppose...
Let W be a subspace of R^n and suppose that v1,v2,w1,w2,w3 are vectors in W. Suppose that v1; v2 are linearly independent and that w1;w2;w3 span W. (a) If dimW = 3 prove that there is a vector in W that is not equal to a linear combination of v1 and v2. (b) If w3 is a linear combination of w1 and w2 prove that w1 and w2 span W. (c) If w3 is a linear combination of w1 and...
(10pt) Let V and W be a vector space over R. Show that V × W...
(10pt) Let V and W be a vector space over R. Show that V × W together with (v0,w0)+(v1,w1)=(v0 +v1,w0 +w1) for v0,v1 ∈V, w0,w1 ∈W and λ·(v,w)=(λ·v,λ·w) for λ∈R, v∈V, w∈W is a vector space over R. (5pt)LetV beavectorspaceoverR,λ,μ∈R,andu,v∈V. Provethat (λ+μ)(u+v) = ((λu+λv)+μu)+μv. (In your proof, carefully refer which axioms of a vector space you use for every equality. Use brackets and refer to Axiom 2 if and when you change them.)
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint....
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint. 1A: Let n be a positive integer, and suppose that T is defined on C^n (with the usual inner product) by T(z1,z2,...,zn) = (0,z1,z2,...,zn−1). Give a formula for T*. 1B: Show that λ is an eigenvalue of T if and only if λ is an eigenvalue of T*.
Let V be a vector space, and suppose that U and W are both subspaces of...
Let V be a vector space, and suppose that U and W are both subspaces of V. Show that U ∩W := {v | v ∈ U and v ∈ W} is a subspace of V.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT