Question

In: Advanced Math

3.5.4 ([Ber14, Ex. 3.6.14]). Let T : V → W and S : W → U...

3.5.4 ([Ber14, Ex. 3.6.14]). Let T : V → W and S : W → U be linear maps, with V finite dimensional.

(a) If S is injective, then Ker ST = Ker T and rank(ST) = rank(T).

(b) If T is surjective, then Im ST = Im S and null(ST) − null(S) = dim V − dim W

Solutions

Expert Solution


Related Solutions

1. Let U = {r, s, t, u, v, w, x, y, z}, D = {s,...
1. Let U = {r, s, t, u, v, w, x, y, z}, D = {s, t, u, v, w}, E = {v, w, x}, and F = {t, u}. Use roster notation to list the elements of D ∩ E. a. {v, w} b. {r, s, t, u, v, w, x, y, z} c. {s, t, u} d. {s, t, u, v, w, x, y, z} 2. Let U = {r, s, t, u, v, w, x, y, z},...
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a...
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a linear transformation. If {T(v1), . . . T(vn)} is linearly independent in W, show that {v1, . . . vn} is linearly independent in V . b. Define similar matrices c Let A1, A2 and A3 be n × n matrices. Show that if A1 is similar to A2 and A2 is similar to A3, then A1 is similar to A3. d. Show that...
Let V and W be Banach spaces and suppose T : V → W is a...
Let V and W be Banach spaces and suppose T : V → W is a linear map. Suppose that for every f ∈ W∗ the corresponding linear map f ◦ T on V is in V ∗ . Prove that T is bounded.
If V = U ⊕ U⟂ and V = W ⊕ W⟂, and if S1: U...
If V = U ⊕ U⟂ and V = W ⊕ W⟂, and if S1: U → W and S2: U⟂ → W⟂ are isometries, then the linear operator defined for u1 ∈ U and u2 ∈ U⟂ by the formula S(u1 + u2) = S1u1 + S2u2 is a well-defined linear isometry. Prove this.
Let W denote the set of English words. For u, v ∈ W, declare u ∼...
Let W denote the set of English words. For u, v ∈ W, declare u ∼ v provided that u, v have the same length and u, v have the same first letter and u, v have the same last letter. a) Prove that ∼ is an equivalence relation. b) List all elements of the equivalence class [a] c) List all elements of [ox] d) List all elements of [are] e) List all elements of [five]. Can you find more...
Let T: V →W be a linear transformation from V to W. a) show that if...
Let T: V →W be a linear transformation from V to W. a) show that if T is injective and S is a linearly independent set of vectors in V, then T(S) is linearly independent. b) Show that if T is surjective and S spans V,then T(S) spans W. Please do clear handwriting!
Let u and v be orthogonal vectors in R3 and let w = 3u + 6v....
Let u and v be orthogonal vectors in R3 and let w = 3u + 6v. Suppose that ||u|| = 5 and ||v|| = 4. Find the cosine of the angle between w and v.
2 Let u,v, and w be vectors, where u=(1,2,3,-1), v=(2,3,1,5) and w=(3,5,4,4). 2.1 Construct a basis...
2 Let u,v, and w be vectors, where u=(1,2,3,-1), v=(2,3,1,5) and w=(3,5,4,4). 2.1 Construct a basis for the vector space spanned by u, v and w. 2.2 Show that c=(1,3,2,1) is not in the vector space spanned by the above vectors u,v and w. 2.3 Show that d=(4,9,17,-11) is in the vector space spanned by the above vectors u,v and w, by expressing d as a linear combination of u,v and w.
Let A ∈ L(U, V ) and B ∈ L(V, W). Assume that V is finite-dimensional....
Let A ∈ L(U, V ) and B ∈ L(V, W). Assume that V is finite-dimensional. Let X be a 3 × 5 matrix and Y be a 5 × 2 matrix. What are the largest and smallest possible ranks of X, Y, and XY? Give examples of the matrix to support your answers
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT