Question

In: Advanced Math

Let V and W be Banach spaces and suppose T : V → W is a...

Let V and W be Banach spaces and suppose T : V → W is a linear map. Suppose that for every f ∈ W∗ the corresponding linear map f ◦ T on V is in V ∗ . Prove that T is bounded.

Solutions

Expert Solution


Related Solutions

Questionnnnnnn a. Let V and W be vector spaces and T : V → W a...
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a linear transformation. If {T(v1), . . . T(vn)} is linearly independent in W, show that {v1, . . . vn} is linearly independent in V . b. Define similar matrices c Let A1, A2 and A3 be n × n matrices. Show that if A1 is similar to A2 and A2 is similar to A3, then A1 is similar to A3. d. Show that...
1. Let V and W be vector spaces over R. a) Show that if T: V...
1. Let V and W be vector spaces over R. a) Show that if T: V → W and S : V → W are both linear transformations, then the map S + T : V → W given by (S + T)(v) = S(v) + T(v) is also a linear transformation. b) Show that if R: V → W is a linear transformation and λ ∈ R, then the map λR: V → W is given by (λR)(v) =...
Let Vand W be vector spaces over F, and let B( V, W) be the set...
Let Vand W be vector spaces over F, and let B( V, W) be the set of all bilinear forms f: V x W ~ F. Show that B( V, W) is a subspace of the vector space of functions 31'( V x W). Prove that the dual space B( V, W)* satisfies the definition of tensor product, with respect to the bilinear mapping b: V x W -> B( V, W)* defined by b(v, w)(f) =f(v, w), f E...
Prove the following: Let V and W be vector spaces of equal (finite) dimension, and let...
Prove the following: Let V and W be vector spaces of equal (finite) dimension, and let T: V → W be linear. Then the following are equivalent. (a) T is one-to-one. (b) T is onto. (c) Rank(T) = dim(V).
V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give...
V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give an example of a map T from R2 to itself (with the usual inner product) such that〈Tv,v〉= 0 for every map. 1B: Suppose that V is a complex space. Show that〈Tu,w〉=(1/4)(〈T(u+w),u+w〉−〈T(u−w),u−w〉)+(1/4)i(〈T(u+iw),u+iw〉−〈T(u−iw),u−iw〉 1C: Suppose T is a linear operator on a complex space such that〈Tv,v〉= 0 for all v. Show that T= 0 (i.e. that Tv=0 for all v).
Let f : V mapped to W be a continuous function between two topological spaces V...
Let f : V mapped to W be a continuous function between two topological spaces V and W, so that (by definition) the preimage under f of every open set in W is open in V : Y is open in W implies f^−1(Y ) = {x in V | f(x) in Y } is open in V. Prove that the preimage under f of every closed set in W is closed in V . Feel free to take V...
Let V and W be finite dimensional vector spaces over a field F with dimF(V )...
Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W ) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T ]AB is a diagonal matrix where every entry along the diagonal is either a 0 or a 1.
1. For a map f : V ?? W between vector spaces V and W to...
1. For a map f : V ?? W between vector spaces V and W to be a linear map it must preserve the structure of V . What must one verify to verify whether or not a map is linear? 2. For a map f : V ?? W between vector spaces to be an isomorphism it must be a linear map and also have two further properties. What are those two properties? As well as giving the names...
Suppose V and V0 are finitely-generated vector spaces and T : V → V0 is a...
Suppose V and V0 are finitely-generated vector spaces and T : V → V0 is a linear transformation with ker(T) = {~ 0}. Is it possible that dim(V ) > dim(V0)? If so, provide a specific example showing this can occur. Otherwise, provide a general proof showing that we must have dim(V ) ≤ dim(V0).
Prove that if U, V and W are vector spaces such that U and V are...
Prove that if U, V and W are vector spaces such that U and V are isomorphic and V and W are isomorphic, then U and W are isomorphic.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT