Question

In: Math

Questionnnnnnn a. Let V and W be vector spaces and T : V → W a...

Questionnnnnnn

a. Let V and W be vector spaces and T : V → W a linear transformation. If {T(v1), . . . T(vn)} is linearly independent in W, show that {v1, . . . vn} is linearly independent in V .

b. Define similar matrices

c Let A1, A2 and A3 be n × n matrices. Show that if A1 is similar to A2 and A2 is similar to A3, then A1 is similar to A3.

d. Show that similar matrices have the same characteristic polynomial and eigenvalues.

e. Determine whether the following mappings are linear transformations.

T : V → R defined by T(x) = hx, vi, where v is a fixed nonzero vector in the real inner product space V .

Solutions

Expert Solution



Related Solutions

1. Let V and W be vector spaces over R. a) Show that if T: V...
1. Let V and W be vector spaces over R. a) Show that if T: V → W and S : V → W are both linear transformations, then the map S + T : V → W given by (S + T)(v) = S(v) + T(v) is also a linear transformation. b) Show that if R: V → W is a linear transformation and λ ∈ R, then the map λR: V → W is given by (λR)(v) =...
Let V and W be Banach spaces and suppose T : V → W is a...
Let V and W be Banach spaces and suppose T : V → W is a linear map. Suppose that for every f ∈ W∗ the corresponding linear map f ◦ T on V is in V ∗ . Prove that T is bounded.
Let Vand W be vector spaces over F, and let B( V, W) be the set...
Let Vand W be vector spaces over F, and let B( V, W) be the set of all bilinear forms f: V x W ~ F. Show that B( V, W) is a subspace of the vector space of functions 31'( V x W). Prove that the dual space B( V, W)* satisfies the definition of tensor product, with respect to the bilinear mapping b: V x W -> B( V, W)* defined by b(v, w)(f) =f(v, w), f E...
Prove the following: Let V and W be vector spaces of equal (finite) dimension, and let...
Prove the following: Let V and W be vector spaces of equal (finite) dimension, and let T: V → W be linear. Then the following are equivalent. (a) T is one-to-one. (b) T is onto. (c) Rank(T) = dim(V).
Let V and W be finite dimensional vector spaces over a field F with dimF(V )...
Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W ) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T ]AB is a diagonal matrix where every entry along the diagonal is either a 0 or a 1.
1. For a map f : V ?? W between vector spaces V and W to...
1. For a map f : V ?? W between vector spaces V and W to be a linear map it must preserve the structure of V . What must one verify to verify whether or not a map is linear? 2. For a map f : V ?? W between vector spaces to be an isomorphism it must be a linear map and also have two further properties. What are those two properties? As well as giving the names...
Prove that if U, V and W are vector spaces such that U and V are...
Prove that if U, V and W are vector spaces such that U and V are isomorphic and V and W are isomorphic, then U and W are isomorphic.
4. Verify that the Cartesian product V × W of two vector spaces V and W...
4. Verify that the Cartesian product V × W of two vector spaces V and W over (the same field) F can be endowed with a vector space structure over F, namely, (v, w) + (v ′ , w′ ) := (v + v ′ , w + w ′ ) and c · (v, w) := (cv, cw) for all c ∈ F, v, v′ ∈ V , and w, w′ ∈ W. This “product” vector space (V ×...
Question 1. Let V and W be finite dimensional vector spaces over a field F with...
Question 1. Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T] A B is a diagonal matrix where every entry along the diagonal is either a 0 or a 1. Hint 1. Suppose A = {~v1, . . . , ~vn}...
Let ? and W be finite dimensional vector spaces and let ?:?→? be a linear transformation....
Let ? and W be finite dimensional vector spaces and let ?:?→? be a linear transformation. We say a linear transformation ?:?→? is a left inverse of ? if ST=I_v, where ?_v denotes the identity transformation on ?. We say a linear transformation ?:?→? is a right inverse of ? if ??=?_w, where ?_w denotes the identity transformation on ?. Finally, we say a linear transformation ?:?→? is an inverse of ? if it is both a left and right...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT