In: Other
YEAR | TOTAL ENROLLMENT |
---|---|
y | |
2015 | 2,000 |
2016 | 2,200 |
2017 | 2,800 |
2018 | 3,000 |
(a) For Period t, let the actual enrollment be At and Forecast be Ft
For 3 year moving average, Ft = (At-1 + At-2 + At-3)/3
=> F2019 = (A2018 + A2017 + At2016)/3 = (3000 + 2800 + 2200)/3 = 2666.67
(b)
For 3 year weighted moving average, Ft = 0.5At-1 + 0.3At-2 + 0.2At-3
=> F2019 = 0.5A2018 + 0.3A2017 + 0.2At2016 = 0.5*3000 + 0.3*2800 + 0.2*2200 = 2780
(c)
Exponential forecasting coefficient ? = 0.40,
For Period t, Actual Demand is = At
Forecast = Ft
Exponential Forecast Ft = Ft-1 + ? (At-1 - Ft-1)
given, F2017 = 2600
A2017 = 2800
=> F2018 = F2017 + ? (A2017 - F2017) = 2600 + 0.4(2800 - 2600) = 2680
F2019 = F2018 + ? (A2018 - F2018) = 2680 + 0.4(3000 - 2680) = 2808
(d)
Let the year be denoted by x and enrollment by y
Let the Regression line be y = bo + b1x
where,
bo = ( Σy Σx2 - Σx Σxy ) / ( nΣx2 - (Σx)2 )
b1 = ( nΣxy - ΣxΣy ) / ( nΣx2 - (Σx)2 )
Year | x | Enrollment (y) | x2 | xy |
2015 | 1 | 2000 | 1 | 2000 |
2016 | 2 | 2200 | 4 | 4400 |
2017 | 3 | 2800 | 9 | 8400 |
2018 | 4 | 3000 | 16 | 12000 |
Total | 10 | 10000 | 30 | 26800 |
=> bo = ( 10000*30 - 10*26800 ) / ( 4*30 - 102 ) = 1600
b1 = ( 4*26800 - 10*10000 ) / ( 4*30 - 102 ) = 360
=> y = 1600 + 360x
Hence, slope = b1 = 360
(e) Y - intercept = bo = 1600
(f) For Year 2019, x = 5
=> y = 1600 + 360*5 = 3400