Question

In: Statistics and Probability

Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X –...

Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X – 4 | > 4} = 0. 8. a) Find P { 0 < X < 5}

Solutions

Expert Solution

ANSWER::

Since X is uniformly distributed over the interval [2,b], so b>2 and the PDF of X is

Also,

Thus, we have

Now the

a) Required proability is

NOTE:: I HOPE YOUR HAPPY WITH MY ANSWER....***PLEASE SUPPORT ME WITH YOUR RATING...

***PLEASE GIVE ME "LIKE"...ITS VERY IMPORTANT FOR ME NOW....PLEASE SUPPORT ME ....THANK YOU

**PLEASE  PLEASE PLEASE GIVE ME "LIKE".........


Related Solutions

for a random variable X that is triangularly distributed over the interval (a,b). That is, fX(a)...
for a random variable X that is triangularly distributed over the interval (a,b). That is, fX(a) = 0, fX(b) = 0, and the peak value for fX occurs at (a+b)/2.show the plots of the probability density function and the cumulative distribution function?
Let random variable X be uniformly distributed in interval [0, T]. a) Find the nth moment...
Let random variable X be uniformly distributed in interval [0, T]. a) Find the nth moment of X about the origin. b) Let Y be independent of X and also uniformly distributed in [0, T]. Calculate the second moment about the origin, and the variance of Z = X + Y
5. A continuous random variable X is uniformly distributed over (0,10). Compute the probability that an...
5. A continuous random variable X is uniformly distributed over (0,10). Compute the probability that an observed value of X will be within one standard deviation of its mean.
A two dimensional variable (X, Y) is uniformly distributed over the square having the vertices (2,...
A two dimensional variable (X, Y) is uniformly distributed over the square having the vertices (2, 0), (0, 2), (-2, 0), and (0, -2). (i) Find the joint probability density function. (ii) Find associated marginal and conditional distributions. (iii) Find E(X), E(Y), Var(X), Var(Y). (iv) Find E(Y|X) and E(X|Y). (v) Calculate coefficient of correlation between X and Y.
Suppose we have a random variable X that is uniformly distributed between a = 0 and...
Suppose we have a random variable X that is uniformly distributed between a = 0 and b = 100. What is σ X? a. 0.913 b. 0.833 c. 50 d. 7.071
A random variable x is uniformly distributed between 20 and 52 . What is the expected...
A random variable x is uniformly distributed between 20 and 52 . What is the expected value of x?
The random variable x is the number of occurrences of an event over an interval of...
The random variable x is the number of occurrences of an event over an interval of ten minutes. It can be assumed that the probability of an occurrence is the same in any two-time periods of an equal length. It is known that the mean number of occurrences in ten minutes is 5.3. The probability that there are 8 occurrences in ten minutes is a. .0771 b. .0241 c. .1126 d. .9107
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1)....
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1). (a) Find the cumulative distribution function of X/Y. (b) Find the cumulative distribution function of XY. (c) Find the mean and variance of XY/Z.
2. Let X be a uniform random variable over the interval (0, 1). Let Y =...
2. Let X be a uniform random variable over the interval (0, 1). Let Y = X(1-X). a. Derive the pdf for Y . b. Check the pdf you found in (a) is a pdf. c. Use the pdf you found in (a) to find the mean of Y . d. Compute the mean of Y by using the distribution for X. e. Use the pdf of Y to evaluate P(|x-1/2|<1/8). You cannot use the pdf for X. f. Use...
The random variable X follows a CONTINUOUS UNIFORM DISTRIBUTION over the interval [50, 250]. Find P(80...
The random variable X follows a CONTINUOUS UNIFORM DISTRIBUTION over the interval [50, 250]. Find P(80 < X < 135). P(80 < X < 135) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT