Question

In: Statistics and Probability

The random variable x is the number of occurrences of an event over an interval of...

The random variable x is the number of occurrences of an event over an interval of ten minutes. It can be assumed that the probability of an occurrence is the same in any two-time periods of an equal length. It is known that the mean number of occurrences in ten minutes is 5.3. The probability that there are 8 occurrences in ten minutes is

a.

.0771

b.

.0241

c.

.1126

d.

.9107

Solutions

Expert Solution

µ = 5.3

P(X = 8) = e * µ8 / 8! = e-5.3 * 5.38 / 8! = 0.0771 (ans)

                                                                                                                                                                                                                                                                             


Related Solutions

for a random variable X that is triangularly distributed over the interval (a,b). That is, fX(a)...
for a random variable X that is triangularly distributed over the interval (a,b). That is, fX(a) = 0, fX(b) = 0, and the peak value for fX occurs at (a+b)/2.show the plots of the probability density function and the cumulative distribution function?
Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X –...
Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X – 4 | > 4} = 0. 8. a) Find P { 0 < X < 5}
2. Let X be a uniform random variable over the interval (0, 1). Let Y =...
2. Let X be a uniform random variable over the interval (0, 1). Let Y = X(1-X). a. Derive the pdf for Y . b. Check the pdf you found in (a) is a pdf. c. Use the pdf you found in (a) to find the mean of Y . d. Compute the mean of Y by using the distribution for X. e. Use the pdf of Y to evaluate P(|x-1/2|<1/8). You cannot use the pdf for X. f. Use...
The random variable X follows a CONTINUOUS UNIFORM DISTRIBUTION over the interval [50, 250]. Find P(80...
The random variable X follows a CONTINUOUS UNIFORM DISTRIBUTION over the interval [50, 250]. Find P(80 < X < 135). P(80 < X < 135) =
(a) If X is a uniform random variable with positive probability on the interval [0, n],...
(a) If X is a uniform random variable with positive probability on the interval [0, n], find the probability density function of eX (b) If X is a uniform random variable with positive probability on the interval [1, n], find E [1/X].
A random variable X follows a uniform distribution on the interval from 0 to 20. This...
A random variable X follows a uniform distribution on the interval from 0 to 20. This distribution has a mean of 10 and a standard deviation of 5.27. We take a random sample of 50 individuals from this distribution. What is the approximate probability that the sample mean is less than 9.5
Suppose X is a uniform random variable on the interval (0, 1). Find the range and...
Suppose X is a uniform random variable on the interval (0, 1). Find the range and the distribution and density functions of Y = Xn for n ≥ 2.
Let X be a random variable that is equal to the number of times a 5...
Let X be a random variable that is equal to the number of times a 5 is rolled in three rolls of a fair 5-sided die with the integers 1 through 5 on the sides. What is E[X2 ]? What is E2 [X], that is, (E[X])2 ? Justify your answers briefly
The number of knots in a piece of lumber is a random variable, X. Suppose that...
The number of knots in a piece of lumber is a random variable, X. Suppose that X has a Poisson distribution with E(X) = 4. (a) If four independent pieces of lumber are examined, what is the probability that there is exactly one lumber has no knots? (b) If we consider 100 pieces of lumber, write down the exact expression for the probability that the total number of knots is at least 450? (c) Find a normal approximation to the...
Define the random variable X to be the number of times in the month of June...
Define the random variable X to be the number of times in the month of June (which has 30 days) Susan wakes up before 6am a. X fits binomial distribution, X-B(n,p). What are the values of n and p? c. what is the probability that Susan wakes us up before 6 am 5 or fewer days in June? d. what is the probability that Susan wakes up before 6am more than 12 times?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT