Question

In: Statistics and Probability

Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1)....

Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1).

(a) Find the cumulative distribution function of X/Y.

(b) Find the cumulative distribution function of XY.

(c) Find the mean and variance of XY/Z.

Solutions

Expert Solution


Related Solutions

Let X and Y be independent continuous random variables, with each one uniformly distributed in the...
Let X and Y be independent continuous random variables, with each one uniformly distributed in the interval from 0 to1. Compute the probability of the following event. XY<=1/7
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the...
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the cumulative distribution and probability density function of Z = X + Y.
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the...
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the expected value E(XY ). b) What is the probability density function fZ(z) of Z = XY ? Hint: First compute the cumulative distribution function FZ(z) = P(Z ≤ z) using a double integral, and then differentiate in z. c) Use your answer to b) to compute E(Z). Compare it with your answer to a).
Let Y and Z be independent continuous random variables, both uniformly distributed between 0 and 1....
Let Y and Z be independent continuous random variables, both uniformly distributed between 0 and 1. 1. Find the CDF of |Y − Z|. 2. Find the PDF of |Y − Z|.
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to...
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to be the smallest k such that X1+X2+⋯+Xn exceeds cn=n2+12n−−√, namely, Nn = min{k≥1:X1+X2+⋯+Xk>ck} Does the limit limn→∞P(Nn>n) exist? If yes, enter its numerical value. If not, enter −999. unanswered Submit You have used 1 of 3 attempts Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.
1) Let U1, U2, ... be independent random variables, each uniformly distributed over the interval (0,...
1) Let U1, U2, ... be independent random variables, each uniformly distributed over the interval (0, 1]. These random variables represent successive bigs on an asset that you are trying to sell, and that you must sell by time = t, when the asset becomes worthless. As a strategy, you adopt a secret number \Theta and you will accept the first offer that's greater than \Theta . The offers arrive according to a Poisson process with rate \lambda = 1....
Let X and Y be independent Gaussian(0,1) random variables. Define the random variables R and Θ,...
Let X and Y be independent Gaussian(0,1) random variables. Define the random variables R and Θ, by R2=X2+Y2,Θ = tan−1(Y/X).You can think of X and Y as the real and the imaginary part of a signal. Similarly, R2 is its power, Θ is the phase, and R is the magnitude of that signal. (b) Find the probability density functions of R and Θ. Are R and Θ independent random variables?
Let X,,X, and X, be independent uniform random variables on [0,1] Write Y = X, +X,...
Let X,,X, and X, be independent uniform random variables on [0,1] Write Y = X, +X, and Z = X+ X. a.) Compute E[X,X,X,. (5 points) b.) Compute Var(X). (5 points) c.) Compute and draw a graph of the density function fr. (15 points)
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on...
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on the unit interval). Let M be the middle value among the 101 numbers, with 50 values less than M and 50 values greater than M. (a). Find the approximate value of P( M < 0.45 ). (b). Find the approximate value of P( | M- 0.5 | < 0.001 ), the probability that M is within 0.001 of 1/2.
Assume that X, Y, and Z are independent random variables and that each of the random...
Assume that X, Y, and Z are independent random variables and that each of the random variables have a mean of 1. Further, assume σX = 1, σY = 2, and σZ = 3. Find the mean and standard deviation of the following random variables: a. U = X + Y + Z b. R = (X + Y + Z)/3 c. T = 2·X + 5·Y d. What is the correlation between X and Y? e. What is the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT