Question

In: Statistics and Probability

5. A continuous random variable X is uniformly distributed over (0,10). Compute the probability that an...

5. A continuous random variable X is uniformly distributed over (0,10). Compute the probability that an observed value of X will be within one standard deviation of its mean.

Solutions

Expert Solution

thank you.


Related Solutions

Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X –...
Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X – 4 | > 4} = 0. 8. a) Find P { 0 < X < 5}
Let X and Y be independent continuous random variables, with each one uniformly distributed in the...
Let X and Y be independent continuous random variables, with each one uniformly distributed in the interval from 0 to1. Compute the probability of the following event. XY<=1/7
The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = x/C , 3 ≤ x ≤ 7, zero elsewhere. Consider Y = g( X ) = 100/(x^2+1). Use cdf approach to find the cdf of Y, FY(y). Hint: F Y ( y ) = P( Y <y ) = P( g( X ) <y ) =
Let x be a continuous random variable that is normally distributed with a mean of 65...
Let x be a continuous random variable that is normally distributed with a mean of 65 and a standard deviation of 15. Find the probability that x assumes a value: less than 48 greater than 87             between 56 and 70
Suppose we have a random variable X that is uniformly distributed between a = 0 and...
Suppose we have a random variable X that is uniformly distributed between a = 0 and b = 100. What is σ X? a. 0.913 b. 0.833 c. 50 d. 7.071
A random variable x is uniformly distributed between 20 and 52 . What is the expected...
A random variable x is uniformly distributed between 20 and 52 . What is the expected value of x?
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the...
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the expected value E(XY ). b) What is the probability density function fZ(z) of Z = XY ? Hint: First compute the cumulative distribution function FZ(z) = P(Z ≤ z) using a double integral, and then differentiate in z. c) Use your answer to b) to compute E(Z). Compare it with your answer to a).
1)Using R, construct one plot of the density function for a uniformly distributed continuous random variable...
1)Using R, construct one plot of the density function for a uniformly distributed continuous random variable defined between 0 and 6. Make sure you include a main title, label both axis correctly and include a legend in your figure. The main title needs to include your last name, also include your R code with your answer. 2) Using R, construct one plot of the density function for a Chi-square distributed random variable. The plots should contain six lines corresponding to...
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT