Question

In: Economics

Suppose we have a random variable X that is uniformly distributed between a = 0 and...

Suppose we have a random variable X that is uniformly distributed between a = 0 and b = 100. What is σ X?

a. 0.913

b. 0.833

c. 50

d. 7.071

Solutions

Expert Solution


Related Solutions

A random variable x is uniformly distributed between 20 and 52 . What is the expected...
A random variable x is uniformly distributed between 20 and 52 . What is the expected value of x?
Let random variable X be uniformly distributed in interval [0, T]. a) Find the nth moment...
Let random variable X be uniformly distributed in interval [0, T]. a) Find the nth moment of X about the origin. b) Let Y be independent of X and also uniformly distributed in [0, T]. Calculate the second moment about the origin, and the variance of Z = X + Y
The weekly output of a steel mill is a uniformly distributed random variable that lies between...
The weekly output of a steel mill is a uniformly distributed random variable that lies between 110 and 175 metirc tons. 1. Compute the probability that the steel mill will produce more than 150 metric tons next week. 2. Determine the probability that the steel mill will produce between 120 and 160 metric tons next week.
Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X –...
Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X – 4 | > 4} = 0. 8. a) Find P { 0 < X < 5}
5. A continuous random variable X is uniformly distributed over (0,10). Compute the probability that an...
5. A continuous random variable X is uniformly distributed over (0,10). Compute the probability that an observed value of X will be within one standard deviation of its mean.
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the...
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the cumulative distribution and probability density function of Z = X + Y.
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the...
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the expected value E(XY ). b) What is the probability density function fZ(z) of Z = XY ? Hint: First compute the cumulative distribution function FZ(z) = P(Z ≤ z) using a double integral, and then differentiate in z. c) Use your answer to b) to compute E(Z). Compare it with your answer to a).
Suppose that random variable X 0 = (X1, X2) is such that E[X 0 ] =...
Suppose that random variable X 0 = (X1, X2) is such that E[X 0 ] = (µ1, µ2) and var[X] = σ11 σ12 σ12 σ22 . (a matrix) (i) Let Y = a + bX1 + cX2. Obtain an expression for the mean and variance of Y . (ii) Let Y = a + BX where a' = (a1, a2) B = b11 b12 0 b22 (a matrix). Obtain an expression for the mean and variance of Y . (ii)...
Suppose we have the following pdf for the random variable X f(x) ={x 0<=x<=1 c/x^2 1<=x<=...
Suppose we have the following pdf for the random variable X f(x) ={x 0<=x<=1 c/x^2 1<=x<= infinity 0 otherwise } (a) 2 points Find the value c such that f(x) is a valid pdf. (b) 3 points Find the cdf of X. (c) 1 point Find the 75th percentile of X.
Suppose voters are uniformly distributed along a continuum between 0 and 1. There are two candidates....
Suppose voters are uniformly distributed along a continuum between 0 and 1. There are two candidates. Voters will vote for the candidate who locates closes to them. Candidates only care about receiving more votes than the other candidate (and prefer a tie to losing).What is the rationalizable set of locations for each candidate?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT