Question

In: Statistics and Probability

for a random variable X that is triangularly distributed over the interval (a,b). That is, fX(a)...

for a random variable X that is triangularly distributed over the interval (a,b). That is, fX(a) = 0, fX(b) = 0, and the peak value for fX occurs at (a+b)/2.show the plots of the probability density function and the cumulative distribution function?

Solutions

Expert Solution

The random variable X follows a triangular distribution over the interval (a, b). Let f_X be the pdf of X. Hence, given the bounds, we have:

The peak value of the pdf occurs at (a + b) / 2. Therefore, the pdf(X) increases linearly from a to (a + b) / 2 and then decreases linearly from (a + b) / 2 to b.

Plotting the pdf, we will get a triangle like this:

The center of the pdf lies at (a + b) / 2, which is midway between a and b. Hence, the triangle is an isosceles triangle with the median from the top point on the bottom line also serving the role of the height of the triangle. The area of the triangle is given using the formula:

Here, height is the f(X) at (a + b) / 2 and Base is the distance (b - a). Since, f(X) is a pdf, the area of the triangle will be 1. Hence, we have:

Thus, our pdf becomes:

The cdf is the cumulative frequency distribution and is obtained by summing all the previous values of the pdf.

Hence, cdf(X) can be represented as F(X) and will be given as:

Therefore, the integral of the pdf becomes the cdf. Initially, the pdf rises linearly and then decreases linearly and hence the sum or the integral of pdf will follow a sigmoid as shown below:


Related Solutions

Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X –...
Random variable X is uniformly distributed over the interval [2, b]. Given: P { |X – 4 | > 4} = 0. 8. a) Find P { 0 < X < 5}
The random variable x is the number of occurrences of an event over an interval of...
The random variable x is the number of occurrences of an event over an interval of ten minutes. It can be assumed that the probability of an occurrence is the same in any two-time periods of an equal length. It is known that the mean number of occurrences in ten minutes is 5.3. The probability that there are 8 occurrences in ten minutes is a. .0771 b. .0241 c. .1126 d. .9107
1) Let X be a continuous random variable. What is true about fX(x)fX(x)? fX(2) is a...
1) Let X be a continuous random variable. What is true about fX(x)fX(x)? fX(2) is a probability. fX(2) is a set. It can only take values between 0 and 1 as input. fX(2) is a number. 2) Let X be a continuous random variable. What is true about FX(x)FX(x)? FX(x) is a strictly increasing function. It decreases to zero as x→∞x→∞. FX(2) is a probability. FX(x) can be any real number.
The random variable X, which denotes the interval between two consecutive events, has the PDF: fx...
The random variable X, which denotes the interval between two consecutive events, has the PDF: fx (?) = 4?^( 2)?^( −2?) ? ≥ 0 If we assume that intervals between events are independent, determine the following: (a) The expected value of X. (b) The expected value of the interval between the 11th and 13th events (c) The probability that ? ≤ 6.
1. Let X be a random variable with probability density function fX given by fX(x) =...
1. Let X be a random variable with probability density function fX given by fX(x) = γαγ/ (x + α)^γ+1 , x ≥ 0, 0, x < 0, where α > 0 and γ > 0. (a) Find the cumulative distribution function (cdf) FX of X. (b) Let Y = log(X+α /α) . Find the cdf of Y and identify the distribution. (c) How could a realisation of X be generated from an R(0,1) random number generator? (d) Let Z...
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from...
A random variable Y is a function of random variable X, where y=x^2 and fx(x)=(x+1)/2 from -1 to 1 and =0 elsewhere. Determine fy(y). In this problem, there are two x values for every y value, which means x=T^-1(y)= +y^0.5 and -y^0.5. Be sure you account for both of these. Ans: fy(y)=0.5y^-0.5
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Crameer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) Find the distribution of Y = (X1 + ... + Xn)/n where X1, ..., Xn is an i.i.d. sample from fX(x, θ). If you can’t find Y, can you find an approximation of Y when n is large? b) Find the best estimator, i.e. MVUE, of θ?
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 or -(x/θ)^2 if you cannot read that) a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Cramer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT