Question

In: Advanced Math

Find dual from primal conversion MIN Z = x1 - 2x2 subject to 4x1 - x2 >= 8 2x1 + x2 >= 10 -x1 + x2 <= 7 and x1,x2 >= 0

Find dual from primal conversion MIN Z = x1 - 2x2 subject to 4x1 - x2 >= 8 2x1 + x2 >= 10 -x1 + x2 <= 7 and x1,x2 >= 0

Solutions

Expert Solution

Find dual from primal conversion

MIN Z = x1 - 2x2

subject to

4x1 - x2 >= 8

2x1 + x2 >= 10

-x1 + x2 <= 7

and x1,x2 >= 0                                

all details are in belowPrimal is (Solution steps of Primal by Simplex method)

 

MIN Zx = x1 - 2 x2

subject to

4 x1 - x2 ≥ 8

2 x1 + x2 ≥ 10

- x1 + x2 ≤ 7

and x1,x2≥0;

 

 

Since objective function is minimizing, all ≤ constraints (3) can be converted to ≥ type by multipling both sides by -1

 

 

300


Related Solutions

Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1...
Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1 + x2 ≤ 5 2x1 + x2 ≤ 7 2x2 + x3 ≥ 6 x1 + x3 = 4 x1 ≥ 0, x2, x3 free
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1...
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1 +2X2 ≤6 X1 -X2 +2X3 =8 X1 ≥0,X2 ≥0,X3 urs
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2...
Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ³ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find the...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6...
Consider the following problem     Maximize Z=2x1 + 5x2 subject to                4x1+ 2x2 ≤ 6                 x1 + x2 ≥ 2                 xi ≥0 for i=1,2 Inserting slack, excess, or artificial variables, construct the initial simplex tableau. Identify the corresponding initial (artificial) basic feasible solution including the objective function value. Identify the entering basic variable and the leaving basic variable for the next iteration.
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Indicate clearly the optimal basic and nonbasic variables and their values and write the reduced cost of each optimal nonbasic variable.
MAX Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 <= 8 2x2...
MAX Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 <= 8 2x2 + 5x3 <= 12 3x1 + x2 + 4x3 <= 15 x1 + x3 = 11 and x1,x2,x3 >= 0 apply the Dual Simplex Method to recover feasibility.
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Solve the LP you create by using the Simplex Method. You can use Big-M or Two-Phase Method if needed
By using Big-m method Minimize z=4x1+8x2+3X3subject to x1+x2>=2, 2x1+x3>=5 and x1,x2,x3>=0
By using Big-m method Minimize z=4x1+8x2+3X3subject to x1+x2>=2, 2x1+x3>=5 and x1,x2,x3>=0
Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1...
Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1 + 3x2 + 2x3 ≥ 20 x1 + 5x2 ≥ 10 x1 + 2x2 + x3 ≤ 18 x1 , x2 , x3 ≥ 0 1. Write this LP in standart form of LP. 2.Find the optimal solution to this problem by applying the Dual Simplex method for finding the initial basic feasible solution to the primal of this LP. Then, find the optimal...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT