Question

In: Advanced Math

Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1...

Find the Dual of the following LP
max z = 4x1 − x2 + 2x3
x1 + x2 ≤ 5
2x1 + x2 ≤ 7
2x2 + x3 ≥ 6
x1 + x3 = 4
x1 ≥ 0, x2, x3 free

Solutions

Expert Solution


Related Solutions

Find dual from primal conversion MIN Z = x1 - 2x2 subject to 4x1 - x2 >= 8 2x1 + x2 >= 10 -x1 + x2 <= 7 and x1,x2 >= 0
Find dual from primal conversion MIN Z = x1 - 2x2 subject to 4x1 - x2 >= 8 2x1 + x2 >= 10 -x1 + x2 = 0
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1...
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1 +2X2 ≤6 X1 -X2 +2X3 =8 X1 ≥0,X2 ≥0,X3 urs
Consider the following LOP P. Max. z = 212x1 −320x2 +273x3 −347x4 +295x5 s.t. −4x1 −2x3...
Consider the following LOP P. Max. z = 212x1 −320x2 +273x3 −347x4 +295x5 s.t. −4x1 −2x3 +8x5 ≤ −22 2x1 +3x2 −x4 = 31 −5x2 +3x3 −2x5 ≤ 27 −7x1 −8x3 +6x4 = −38 −9x3 −2x4 +x5 ≤ −40 −x2 −3x4 −5x5 ≤ 42 & x1, x3, x4 ≥ 0 a. Find x∗ and write the Phase 0, I and II pivots that solve P. b. Use the General Complementary Slackness Theorem to find the optimal certificate y∗ [do not...
Solve the following linear programs graphically. Minimize            Z = 4X1 - X2 Subject to            X1 +...
Solve the following linear programs graphically. Minimize            Z = 4X1 - X2 Subject to            X1 + X2 ≤ 6                             X1 - X2 ≥ 3                            -X1 + 2X2 ≥ 2                            X1, X2 ≥ 0
Consider the following all-integer linear program: Max x1 + x2 s.t. 4x1 + 6x2 ≤ 22...
Consider the following all-integer linear program: Max x1 + x2 s.t. 4x1 + 6x2 ≤ 22 x1 + 5x2 ≤ 15 2x1 + x2 ≤ 9   x1, x2 ≥ 0 and integer Solve the LP Relaxation of this problem. The optimal solution to the LP Relaxation is x1 = ___, x2 = .____________ Its value is ___________ Find the optimal integer solution. The optimal solution to the LP Relaxation is x1 = _____x2 = __________ Its value is _______
Given the following LP max z = 2x1 + x2 + x3 s. t. 3x1 -...
Given the following LP max z = 2x1 + x2 + x3 s. t. 3x1 - x2 <= 8 x2 +x3 <= 4 x1,x3 >= 0, x2 urs (unrestricted in sign) A. Reformulate this LP such that 1)All decision variables are non-negative. 2) All functional constraints are equality constraints B. Set up the initial simplex tableau. C. Determine which variable should enter the basis and which variable should leave.
x1 + x2 - 2x4 = 2 x1 + x2 + 2x3 + 6x4 + x5...
x1 + x2 - 2x4 = 2 x1 + x2 + 2x3 + 6x4 + x5 = 8 −2x1 - 2x2 + x3 + 8x4 = −1 3x3 + 12x4 + 2x5 = 9 Let the linear system be given. a. Find the reduced row eelon form of the combined matrix (augmented matrix) of the system. b. Is the system consistent? If the system is consistent, find the overall solution of the system. c. Do all the solutions of the...
Consider the following LP. Use revised simplex formula to answer the questions. Max Z = -x1...
Consider the following LP. Use revised simplex formula to answer the questions. Max Z = -x1 +2x3 +3x4 subject to x1 -x2+2x3 ≥8 4x1 +2x2 +7x3 +9x4 ≥ 30 2x1 +3x3 +7x4 ≤ 20 3x1 +x2 -3x3 +4x4 = 1 x1, x2, x3, x4 ≥ 0 a. Show that the basic feasible solution where x1, x2, x3, and x4 is not a feasible solution to the given LP. b. Show that the basic feasible solution where x1, x3, x4, and...
3) (15 pts) Consider the following LP formulation: max z = x1 + 2x2 s.t. −...
3) (15 pts) Consider the following LP formulation: max z = x1 + 2x2 s.t. − x1 + x2 ≤ 2 x2 ≤ 3 kx1 + x2 ≤ 2k + 3 x1, x2 ≥ 0 The value of the parameter k ≥ 0 has not been determined yet. The solution currently being used is x1 = 2, x2 = 3. Use graphical analysis to determine the values of k such that this solution is actually optimal.
Solve the following LP problem using graphical solution method. MAX: 5 X1 + 3 X2 Subject...
Solve the following LP problem using graphical solution method. MAX: 5 X1 + 3 X2 Subject to: 2 X1 − 1 X2 ≤ 2 6 X1 + 6 X2 ≥ 12 1 X1 + 3 X2 ≤ 5 X1, X2 ≥ 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT