Question

In: Statistics and Probability

Given the following primal problem: maximize z = 2x1 + 4x2 + 3x3 subject to x1...

Given the following primal problem:

maximize z = 2x1 + 4x2 + 3x3

subject to

x1 + 3x2 + 2x3 ≥ 20

x1 + 5x2 ≥ 10

x1 + 2x2 + x3 ≤ 18

x1 , x2 , x3 ≥ 0

1. Write this LP in standart form of LP.

2.Find the optimal solution to this problem by applying the Dual Simplex method for finding the initial basic feasible solution to the primal of this LP. Then, find the optimal solution applying the Primal Simplex method. (By Tableau)

Solutions

Expert Solution

1)

2)

Primal simplex method


Related Solutions

4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
Consider the following linear programming problem Maximize 6x1 + 4x2 + 5x3 Subject to: 2x1 +...
Consider the following linear programming problem Maximize 6x1 + 4x2 + 5x3 Subject to: 2x1 + 3x2 + x3 ≥ 30 2x1 + x2 + x3 ≤ 50 4x1 + 2x2 + 3x3 ≤ 120 x1, x2, x3 ≥ 0 a) Find the optimal solution by using simplex method b) Find the dual price for the first constraint. c) Find the dual price for the second constraint. d) Find the dual price for the third constraint. e) Suppose the right-hand...
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to...
Consider the following Integer Linear Programming (ILP) model Maximize Z = X1 + 4X2 Subject to X1 + X2 < 7 // Resource 1 –X1 + 3X2 < 3 // Resource 2 X1, X2 > 0 X1, X2 are integer i. Consider using the Branch and Bound (B & B) technique to solve the ILP model. With the help of Tora software, draw the B & B tree. Always give priority for X1 in branching over X2. Clearly label the...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+...
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ≥ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3 to 6 and change coefficient of x3 to 5in constraint 1 ,to 2 in constraint 2 ,to 4 in constraint3. calculate new optimal solution using sensitivity analysis
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2...
Solve the following linear programming model graphically: Max Z= 3x1 +4x2 Subject to: 2x1 + 4x2 <= 22 -x1 + 4x2 <= 10 4x1 – 2x2 <= 14 x1 – 3x2 <= 1 x1, x2, >=0 Clearly identify the feasible region, YOUR iso-profit line and the optimal solution (that is, d.v. values and O.F. Value.
A primal maximization problem is given. Maximize f = 60x1 + 30x2 subject to 3x1 +...
A primal maximization problem is given. Maximize f = 60x1 + 30x2 subject to 3x1 + 2x2 ≤ 150 x1 + x2 ≤ 70 . (a) Form the dual minimization problem. (Use y1 and y2 as the variables and g as the function.) Minimize g =     subject to    ≥ 60    ≥ 30 y1, y2 ≥ 0 . (b) Solve both the primal and dual problems with the simplex method. primal     x1 = primal     x2 = primal     f =...
A primal maximization problem is given. Maximize f = 20x1 + 10x2 subject to 3x1 +...
A primal maximization problem is given. Maximize f = 20x1 + 10x2 subject to 3x1 + 2x2 ≤ 90 x1 + x2 ≤ 40 . (a) Form the dual minimization problem. (Use y1 and y2 as the variables and g as the function.) Minimize g = subject to = (b) Solve both the primal and dual problems with the simplex method. primal     x1 = primal     x2 = primal     f = dual     y1 = dual     y2 = dual     g =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT