In: Statistics and Probability
The following data are the monthly salaries y and the grade point averages x for students who obtained a bachelor's degree in business administration.
GPA | Monthly Salary ($) |
2.6 | 3,600 |
3.4 | 3,800 |
3.6 | 4,300 |
3.2 | 3,700 |
3.4 | 4,100 |
3 | 2,400 |
The estimated regression equation for these data is y= 350 +
1031.3x and MSE = 383594.
Use Table 1 of Appendix B.
a. Develop a point estimate of the starting
salary for a student with a GPA of 3.0 (to 1 decimal).
b. Develop a 95% confidence interval for the mean starting salary for all students with a 3.0 GPA (to 2 decimals).
$ ( , )
c. Develop a 95% prediction interval for Ryan Dailey, a student with a GPA of 3.0 (to 2 decimals).
$ ( , )
ΣX | Σ(x-x̅)² | ||||
total sum | 19.20 | 0.64 | |||
mean | 3.20 | SSxx |
a)
Predicted Y at X= 3 is
Ŷ= 350.0000 +
1031.2500 *3= 3443.8
b)
X Value= 3
Confidence Level= 95%
Sample Size , n= 6
Degrees of Freedom,df=n-2 = 4
critical t Value=tα/2 = 2.776 [excel
function: =t.inv.2t(α/2,df) ]
X̅ = 3.20
Σ(x-x̅)² =Sxx 0.64
Standard Error of the Estimate,Se= 619.3495
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
296.491
margin of error,E=t*Std error=t* S(ŷ) =
2.7764 * 296.491 =
823.1909
Confidence Lower Limit=Ŷ +E = 3443.750
- 823.191 = 2620.56
Confidence Upper Limit=Ŷ +E = 3443.750
+ 823.191 = 4266.94
c)
For Individual Response Y
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =
686.6591
margin of error,E=t*std error=t*S(ŷ)=
2.776 * 686.659 =
1906.4712
Prediction Interval Lower Limit=Ŷ -E =
3443.750 - 1906.471
= 1537.28
Prediction Interval Upper Limit=Ŷ +E =
3443.750 + 1906.471
= 5350.22