In: Statistics and Probability
Sample grade point averages for ten male students and ten female students are listed. Find the coefficient of variation for each of the two data sets. Then compare the results
Males 2.5 3.8 3.6 3.9 2.6 2.6 3.6 3.2 3.9 1.8
Females 2.8 3.5 2.1 3.7 3.5 4.1 2.1 3.9 3.9 2.3
The coefficient of variation for males is __%.
The Coefficient of variation for females Is __ %
Solution:- Given that data
Males 2.5 3.8 3.6 3.9 2.6 2.6 3.6 3.2 3.9 1.8
Females 2.8 3.5 2.1 3.7 3.5 4.1 2.1 3.9 3.9 2.3
=> The coefficient of variation for males is 23.2%.
Explanation:-
Mean = (2.5 + 3.8 + 3.6 + 3.9 + 2.6 + 2.6 + 3.6 + 3.2 + 3.9 +
1.8)/10
= 31.5/10
Mean = 3.15
Standard Deviation σ = √(1/10 - 1) x ((2.5 - 3.15)2 +
(3.8 - 3.15)2 + (3.6 - 3.15)2 + (3.9 -
3.15)2 + (2.6 - 3.15)2 + (2.6 -
3.15)2 + (3.6 - 3.15)2 + (3.2 -
3.15)2 + (3.9 - 3.15)2 + (1.8 -
3.15)2)
= √(1/9) x ((-0.65)2 + (0.65)2 +
(0.45)2 + (0.75)2 + (-0.55)2 +
(-0.55)2 + (0.45)2 + (0.05)2 +
(0.75)2 + (-1.35)2)
= √(0.1111) x ((0.4225) + (0.4225) + (0.2025) + (0.5625) + (0.3025)
+ (0.3025) + (0.2025) + (0.0025) + (0.5625) + (1.8225))
= √(0.1111) x (4.805)
= √(0.5338355)
= 0.7307
Cofficient of Varaiance = σ/μ
= 0.7307 / 3.15
Coefficient of Variance = 0.232
=> The Coefficient of variation for females Is 24.75 %
Explanation:-
Mean = (2.8 + 3.5 + 2.1 + 3.7 + 3.5 + 4.1 + 2.1 + 3.9 + 3.9 +
2.3)/10
= 31.9/10
Mean = 3.19
Standard Deviation σ = √(1/10 - 1) x ((2.8 - 3.19)2 +
(3.5 - 3.19)2 + (2.1 - 3.19)2 + (3.7 -
3.19)2 + (3.5 - 3.19)2 + (4.1 -
3.19)2 + (2.1 - 3.19)2 + (3.9 -
3.19)2 + (3.9 - 3.19)2 + (2.3 -
3.19)2)
= √(1/9) x ((-0.39)2 + (0.31)2 +
(-1.09)2 + (0.51)2 + (0.31)2 +
(0.91)2 + (-1.09)2 + (0.71)2 +
(0.71)2 + (-0.89)2)
= √(0.1111) x ((0.1521) + (0.0961) + (1.1881) + (0.2601) + (0.0961)
+ (0.8281) + (1.1881) + (0.5041) + (0.5041) + (0.7921))
= √(0.1111) x (5.609)
= √(0.6231599)
= 0.7894
Cofficient of Varaiance = σ/μ
= 0.7894/3.19
Coefficient of Variance = 0.2475