In: Statistics and Probability
The following data are the monthly salaries y and the grade point averages x for students who obtained a bachelor's degree in business administration. GPA Monthly Salary ($) 2.7 3,600 3.5 3,800 3.6 4,200 3.1 3,700 3.5 4,100 2.8 2,500 The estimated regression equation for these data is ŷ = -55.3 + 1,157.9x and MSE =209,013. a. Develop a point estimate of the starting salary for a student with a GPA of 3.0 (to 1 decimal). $ b. Develop a 95% confidence interval for the mean starting salary for all students with a 3.0 GPA (to 2 decimals). $ ( , ) c. Develop a 95% prediction interval for Ryan Dailey, a student with a GPA of 3.0 (to 2 decimals). $ ( , )
a)
Ŷ = -55.3 +
1157.9 *x
Predicted Y at X= 3 is
Ŷ = -55.3 + 1157.9
*3=3418.4
b)
std error = √MSE = 457.17957
X | Y | (x-x̅)² |
2.7 | 3600 | 0.25 |
3.5 | 3800 | 0.09 |
3.6 | 4200 | 0.16 |
3.1 | 3700 | 0.01 |
3.5 | 4100 | 0.09 |
2.8 | 2500 | 0.16 |
here, x̅ = Σx / n= 3.20
SSxx = Σ(x-x̅)² = 0.7600
X Value= 3
Confidence Level= 95%
Sample Size , n= 6
Degrees of Freedom,df=n-2 = 4
critical t Value=tα/2 = 2.776 [excel
function: =t.inv.2t(α/2,df) ]
X̅ = 3.20
Σ(x-x̅)² =Sxx 0.8
Standard Error of the Estimate,Se= 457.18
Predicted Y at X= 3 is
Ŷ = -55.263 +
1157.895 * 3 =
3418.421
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
214.094
margin of error,E=t*Std error=t* S(ŷ) =
2.7764 * 214.0939 =
594.4201
Confidence Lower Limit=Ŷ +E = 3418.421
- 594.4201 = 2824.00
Confidence Upper Limit=Ŷ +E = 3418.421
+ 594.4201 = 4012.84
c)
For Individual Response Y
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =
504.8261
margin of error,E=t*std error=t*S(ŷ)=
2.7764 * 504.83 =
1401.6219
Prediction Interval Lower Limit=Ŷ -E =
3418.421 - 1401.622
= 2016.80
Prediction Interval Upper Limit=Ŷ +E =
3418.421 + 1401.622
= 4820.04