Question

In: Advanced Math

y'' + y' + y = Asin(ωt), y(0) = 0 , y'(0) = 0

y'' + y' + y = Asin(ωt), y(0) = 0 , y'(0) = 0

Solutions

Expert Solution

  1. I have assumed that the symbol w is related to cube roots of unity(since, no previous information was provided.)

Related Solutions

y''' + 2y'' − y' − 2y = sin(4t),  y(0) = 0,  y'(0) = 0,  y''(0) = 1
y''' + 2y'' − y' − 2y = sin(4t),  y(0) = 0,  y'(0) = 0,  y''(0) = 1
Solve y'''-4y'=32xe2x-24x2 , y(0)=0 y'(0)=0 y''(0)=-1
Solve y'''-4y'=32xe2x-24x2 , y(0)=0 y'(0)=0 y''(0)=-1
y''-2y'+1=0; y(0)=0, y'(0)=-1
y''-2y'+1=0; y(0)=0, y'(0)=-1
Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.
Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.
Find the general solution and solve the IVP y''+y'-y=0, y(0)=2, y'(0)=0
Find the general solution and solve the IVP y''+y'-y=0, y(0)=2, y'(0)=0
(1 point) Find yy as a function of xx if y‴+9y′=0,y‴+9y′=0, y(0)=−2,  y′(0)=24,  y″(0)=−18.y(0)=−2,  y′(0)=24,  y″(0)=−18. y(x)= ?
(1 point) Find yy as a function of xx if y‴+9y′=0,y‴+9y′=0, y(0)=−2,  y′(0)=24,  y″(0)=−18.y(0)=−2,  y′(0)=24,  y″(0)=−18. y(x)= ?
Solve the IVP: y’’’ – y ’= 2sinx where: y(0)=0, y’(0)=0, y”(0)=1 Use an annihilator method,...
Solve the IVP: y’’’ – y ’= 2sinx where: y(0)=0, y’(0)=0, y”(0)=1 Use an annihilator method, please.
solve the initial value problem Y" + 2Y' - Y = 0, Y(0)=0,Y'(0) = 2sqrt2
solve the initial value problem Y" + 2Y' - Y = 0, Y(0)=0,Y'(0) = 2sqrt2
la place transform of 1. y´´+4y´+3y=0. y(0)=3, y´(0)=1 2. y´´+2y´+y=0. y(0)=1, y´(0)=1
la place transform of 1. y´´+4y´+3y=0. y(0)=3, y´(0)=1 2. y´´+2y´+y=0. y(0)=1, y´(0)=1
Find y as a function of x if y′′′+25y′=0 y(0)=2,  y′(0)=20,  y′′(0)=−100 y(x)=
Find y as a function of x if y′′′+25y′=0 y(0)=2,  y′(0)=20,  y′′(0)=−100 y(x)=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT