Question

In: Advanced Math

y''' + 2y'' − y' − 2y = sin(4t),  y(0) = 0,  y'(0) = 0,  y''(0) = 1

y''' + 2y'' − y' − 2y = sin(4t),  y(0) = 0,  y'(0) = 0,  y''(0) = 1

Solutions

Expert Solution

we find auxilary equation then its roots.next we write homogeneous solution.then we use method of undetermined coefficients to find particular solution.then we apply initial conditions to find constants.


Related Solutions

y"-3y'+2y=4t-8 , y(0)=2 , y'(0)=7 y(t)=?
y"-3y'+2y=4t-8 , y(0)=2 , y'(0)=7 y(t)=?
y''-2y'+1=0; y(0)=0, y'(0)=-1
y''-2y'+1=0; y(0)=0, y'(0)=-1
x^2y''+2xy'+x^2y=0 Determine y if     y1=(sin(x))/x
x^2y''+2xy'+x^2y=0 Determine y if     y1=(sin(x))/x
5. Solve equation y'+2y=2-e^-4t, where y(0)=1 6. Use Euler’s method for a previous problem at t=0,...
5. Solve equation y'+2y=2-e^-4t, where y(0)=1 6. Use Euler’s method for a previous problem at t=0, 0.1, 0.2, 0.3. Compare approximate and the exact values of y.
Given the differential equation y''+y'+2y=0,  y(0)=−1,  y'(0)=2y′′+y′+2y=0,  y(0)=-1,  y′(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y}Y(s)=L{y}. You do not...
Given the differential equation y''+y'+2y=0,  y(0)=−1,  y'(0)=2y′′+y′+2y=0,  y(0)=-1,  y′(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y}Y(s)=L{y}. You do not need to actually find the solution to the differential equation.
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0
  a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0 b) Solve using variation of parameters: y" -9y = x/e^3x
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
Solve the following problems: (a) y'' - 2y' + 5y = 0 with y(0) = 1...
Solve the following problems: (a) y'' - 2y' + 5y = 0 with y(0) = 1 and y'(0) = 2. (b) y(3) - 3y' + 2y = 0 with y(0) = 5, y'(0) = 6, and y''(0) = 11.
y''-3y+2y=e^3t y(0)=1 y'(0)=0 laplace transformation
y''-3y+2y=e^3t y(0)=1 y'(0)=0 laplace transformation
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT