Question

In: Math

Solve the IVP: y’’’ – y ’= 2sinx where: y(0)=0, y’(0)=0, y”(0)=1 Use an annihilator method,...

Solve the IVP: y’’’ – y ’= 2sinx

where: y(0)=0, y’(0)=0, y”(0)=1

Use an annihilator method, please.

Solutions

Expert Solution


Related Solutions

use the annihilator method to show y"+3y'-4y=8x+5ex, y(0)=1, y'(0)=2
use the annihilator method to show y"+3y'-4y=8x+5ex, y(0)=1, y'(0)=2
3. Using the method of Laplace transforms solve the IVP: y'' + 3y'+2y=e2t, y(0)=1, y'(0)=1
3. Using the method of Laplace transforms solve the IVP: y'' + 3y'+2y=e2t, y(0)=1, y'(0)=1
a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0
  a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0 b) Solve using variation of parameters: y" -9y = x/e^3x
Differential Equations Use a series solution to solve the IVP . y′′−4y= 0 y(0) = 3...
Differential Equations Use a series solution to solve the IVP . y′′−4y= 0 y(0) = 3 y′(0) = 5. (Your answer will use one or more series.)
1. solve the IVP: xy''-y/x=lnx, on (0, inifnity), y(1)=-1, y'(1)=-2 2.solve the IVP: y''-y=(e^x)/sqrtx, y(1)=e, y'(1)=0...
1. solve the IVP: xy''-y/x=lnx, on (0, inifnity), y(1)=-1, y'(1)=-2 2.solve the IVP: y''-y=(e^x)/sqrtx, y(1)=e, y'(1)=0 3. Given that y1(x)=x is a solution of xy''-xy'+y=0 on (0, inifinity, solve the IVP: xy''-xy'+y=2 on(0,infinity), y(3)=2, y'(3)=1 14. solve the IVP: X'=( 1 2 3) X, X(0)=(0 ##################0 1 4####### -3/8 ##################0 0 1 ########1/4
Find the general solution and solve the IVP y''+y'-y=0, y(0)=2, y'(0)=0
Find the general solution and solve the IVP y''+y'-y=0, y(0)=2, y'(0)=0
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = -...
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = - 1 , i am stuck on the partial fraction decomposition step. please explain the decomposition clearly.
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
SOLVE the IVP: (D^2+1)y = e^t, y(0) = -1 and y'(0) = 1. Thank you.
SOLVE the IVP: (D^2+1)y = e^t, y(0) = -1 and y'(0) = 1. Thank you.
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT