Question

In: Advanced Math

Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.

Find y as a function of x if y^(4)−6y′′′+9y′′=0,

y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.

Solutions

Expert Solution


Related Solutions

Find y as a function of x if y′′′−11y′′+30y′=0 y(0)=7,  y′(0)=9,  y′′(0)=4.
Find y as a function of x if y′′′−11y′′+30y′=0 y(0)=7,  y′(0)=9,  y′′(0)=4.
Find y as a function of t if 100y′′−9y=0100y″−9y=0 with y(0)=3,y′(0)=8.
Find y as a function of t if 100y′′−9y=0100y″−9y=0 with y(0)=3,y′(0)=8.
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
find the general solution of the given differential equation. 1. y''+2y'−3y=0 2.  6y''−y'−y=0 3.  y''+5y' =0 4.  y''−9y'+9y=0
find the general solution of the given differential equation. 1. y''+2y'−3y=0 2.  6y''−y'−y=0 3.  y''+5y' =0 4.  y''−9y'+9y=0
Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?
Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?
(1 point) Find yy as a function of xx if y‴+9y′=0,y‴+9y′=0, y(0)=−2,  y′(0)=24,  y″(0)=−18.y(0)=−2,  y′(0)=24,  y″(0)=−18. y(x)= ?
(1 point) Find yy as a function of xx if y‴+9y′=0,y‴+9y′=0, y(0)=−2,  y′(0)=24,  y″(0)=−18.y(0)=−2,  y′(0)=24,  y″(0)=−18. y(x)= ?
Find y as a function of x if y′′′−16y′′+63y′=144ex, y(0)=16, y′(0)=11, y′′(0)=15. y(x)=
Find y as a function of x if y′′′−16y′′+63y′=144ex, y(0)=16, y′(0)=11, y′′(0)=15. y(x)=
Find the general solution of the ODE: y'' − 6y' + 9y = (1 + x^2)e^2x...
Find the general solution of the ODE: y'' − 6y' + 9y = (1 + x^2)e^2x .
Find the solution of y′′+6y′=144sin(6t)+576cos(6t) with y(0)=1 and y′(0)=9. y= _____
Find the solution of y′′+6y′=144sin(6t)+576cos(6t) with y(0)=1 and y′(0)=9. y= _____
y″+9y′=162sin(9t)+324cos(9t) y(0)=7 y'(0)=7
y″+9y′=162sin(9t)+324cos(9t) y(0)=7 y'(0)=7
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT