Question

In: Statistics and Probability

Suppose x has a distribution with a mean of 40 and a standard deviation of 28....

Suppose x has a distribution with a mean of 40 and a standard deviation of 28. Random samples of size n = 64 are drawn.

(a) Describe the x distribution and compute the mean and standard deviation of the distribution.

x has  ---Select---

a binomial

an approximately normal

a normal

a geometric

an unknown

a Poisson distribution

with mean μx = ? and standard deviation σx =  .?

(b) Find the z value corresponding to x = 33.

z =

c) Find P(x < 33). (Round your answer to four decimal places.)

P(x < 33) =

(d) Would it be unusual for a random sample of size 64 from the x distribution to have a sample mean less than 33? Explain.

No, it would not be unusual because less than 5% of all such samples have means less than 33.

Yes, it would be unusual because more than 5% of all such samples have means less than 33.    

Yes, it would be unusual because less than 5% of all such samples have means less than 33.

No, it would not be unusual because more than 5% of all such samples have means less than 33.

Solutions

Expert Solution

------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

Refer Z-table to find the probability or use excel formula "=NORM.S.DIST(-2, TRUE)" to find the probability.

------------------------------------------------------------------------------------------------------------------

Since the probability is 0.0227 (2.27%) which is less than 0.05 (5%). Hence considered unusual.


Related Solutions

Suppose x has a distribution with a mean of 40 and a standard deviation of 21....
Suppose x has a distribution with a mean of 40 and a standard deviation of 21. Random samples of size n = 36 are drawn. (a) Describe the x distribution and compute the mean and standard deviation of the distribution. x has distribution with mean μx = and standard deviation σx = . (b) Find the z value corresponding to x = 47. z = (c) Find P(x < 47). (Round your answer to four decimal places.) P(x < 47)...
Suppose x has a normal distribution with mean μ = 28 and standard deviation σ =...
Suppose x has a normal distribution with mean μ = 28 and standard deviation σ = 4. a) Describe the distribution of x values for sample size n = 4. (Round σx to two decimal places.) μx = σx = b) Describe the distribution of x values for sample size n = 16. (Round σx to two decimal places.) μx = σx = c) Describe the distribution of x values for sample size n = 100. (Round σx to two...
Suppose x has a distribution with a mean of 70 and a standard deviation of 52....
Suppose x has a distribution with a mean of 70 and a standard deviation of 52. Random samples of size n = 64 are drawn. (a) Describe the x distribution and compute the mean and standard deviation of the distribution. x has distribution with mean μx = and standard deviation σx = . (b) Find the z value corresponding to x = 83. z = (c) Find P(x < 83). (Round your answer to four decimal places.) P(x < 83)...
Suppose x has a distribution with a mean of 70 and a standard deviation of 3....
Suppose x has a distribution with a mean of 70 and a standard deviation of 3. Random samples of size n = 36 are drawn. (a) Describe the x bar distribution. -x bar has an unknown distribution. -x bar has a binomial distribution. -x bar has a Poisson distribution. -x bar has a geometric distribution. -x bar has a normal distribution. -x bar has an approximately normal distribution. Compute the mean and standard deviation of the distribution. (For each answer,...
Suppose x has a distribution with a mean of 90 and a standard deviation of 36....
Suppose x has a distribution with a mean of 90 and a standard deviation of 36. Random samples of size n = 64 are drawn. (a) Describe the x-bar distribution and compute the mean and standard deviation of the distribution. x-bar has _____ (an approximately normal, a binomial, an unknown, a normal, a Poisson, a geometric) distribution with mean μx-bar = _____ and standard deviation σx-bar = _____ . (b) Find the z value corresponding to x-bar = 99. z...
Suppose x has a distribution with a mean of 60 and a standard deviation of 21....
Suppose x has a distribution with a mean of 60 and a standard deviation of 21. Random samples of size n = 36 are drawn. (a) Describe the x bar distribution. Compute the mean and standard deviation of the distribution. (For each answer, enter a number.) (b) Find the z value corresponding to x bar = 53. (c) Find P(x bar < 53). (Enter a number. Round your answer to four decimal places.) (d) Would it be unusual for a...
Suppose x has a distribution with a mean of 70 and a standard deviation of 27....
Suppose x has a distribution with a mean of 70 and a standard deviation of 27. Random samples of size n = 36 are drawn. (a) Describe the x distribution and compute the mean and standard deviation of the distribution. x has  ---Select--- a binomial a geometric a Poisson a normal an approximately normal an unknown distribution with mean μx = and standard deviation σx =  . (b) Find the z value corresponding to x = 61. z = (c) Find P(x...
Suppose x has a distribution with a mean of 50 and a standard deviation of 15....
Suppose x has a distribution with a mean of 50 and a standard deviation of 15. Random samples of size n = 36 are drawn. (a) Describe the x bar distribution. x bar has an unknown distribution. x bar has a binomial distribution. x bar has an approximately normal distribution. x bar has a Poisson distribution. x bar has a geometric distribution. x bar has a normal distribution. Compute the mean and standard deviation of the distribution. (For each answer,...
Suppose x has a distribution with a mean of 70 and a standard deviation of 51....
Suppose x has a distribution with a mean of 70 and a standard deviation of 51. Random samples of size n = 36 are drawn. (a) Describe the  distribution. has a binomial distribution. has an approximately normal distribution.     has a geometric distribution. has a normal distribution. has an unknown distribution. has a Poisson distribution. (b) Compute the mean and standard deviation of the distribution. (For each answer, enter a number.) = = What price do farmers get for their watermelon crops?...
Suppose x has a distribution with a mean of 80 and a standard deviation of 20....
Suppose x has a distribution with a mean of 80 and a standard deviation of 20. Random samples of size n = 64 are drawn. (a) Describe the x distribution and compute the mean and standard deviation of the distribution. x has distribution with mean μx = and standard deviation σx = . (b) Find the z value corresponding to x = 75. z = (c) Find P(x < 75). (Round your answer to four decimal places.) P(x < 75)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT