Question

In: Statistics and Probability

Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X)...

Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X) = var(Y) = 10. A new random variable is defined as: W = X+2Y+2. a. Find E[W] and var[W] if X and Y are independent. b. Find E[W] and var[W] if E[XY] = 20. c. If we find that E[XY] = E[X]E[Y], what do we know about the relationship between the random variables X and Y?

Solutions

Expert Solution



Related Solutions

Let X and Y be jointly normal random variables with parameters E(X) = E(Y ) =...
Let X and Y be jointly normal random variables with parameters E(X) = E(Y ) = 0, Var(X) = Var(Y ) = 1, and Cor(X, Y ) = ρ. For some nonnegative constants a ≥ 0 and b ≥ 0 with a2 + b2 > 0 define W1 = aX + bY and W2 = bX + aY . (a)Show that Cor(W1, W2) ≥ ρ (b)Assume that ρ = 0.1. Are W1 and W2 independent or not? Why? (c)Assume now...
E(Y) = 4, E(X) = E(Y+2), Var(X) = 5, Var(Y) = Var(2X+2) a. What is E(2X...
E(Y) = 4, E(X) = E(Y+2), Var(X) = 5, Var(Y) = Var(2X+2) a. What is E(2X -2Y)? b. What is Var(2X-Y+2)? c. What is SD(3Y-3X)? 2) In a large community, 65% of the residents want to host an autumn community fair. The rest of the residents answer either disagree or no opinion on this proposal. A sample of 18 residents was randomly chosen and asked for their opinions. a) What is th probability that the residents answer either disagree or...
Given: E[x] = 4, E[y] = 6, Var(x) = 2, Var(y) = 1, and cov(x,y) =...
Given: E[x] = 4, E[y] = 6, Var(x) = 2, Var(y) = 1, and cov(x,y) = 0.2 Find a lower bound on (5 < x + y < 10). State the theorem used.
please show all steps Q.4 Let X and Y be continuous random variables with the joint...
please show all steps Q.4 Let X and Y be continuous random variables with the joint pdf: f(x, y) = { k(x + y), if (x, y) ∈ 0 ≤ y ≤ x ≤ 1 ; 0 otherwise Answer the question with the equation below please f(x, y) = 2(x + y), for 0 ≤ y ≤ x ≤ 1 and 0 otherwise. (a) Find E[X + Y ] and E[X − Y ] (b) Find E[XY ] (c) Find...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0 < x, 0 < y, x + y < 2 and 0 otherwise 1) Find  P[X ≥ 1|Y ≤ 1.5] 2) Find P[X ≥ 0.5|Y ≤ 1]
Let X and Y be two continuous random variables with the joint probability density function of...
Let X and Y be two continuous random variables with the joint probability density function of for 0 < x < 2, 0 < y < 2, x + y < 1,where c is a constant. (In all the following answers, you do NOT need to find what the value of c is; just treat it as a number.) (a) Write out the marginal distribution of Y. (b) P(Y < 1/3) = ? (c) P(X < 1.5, Y < 0.5)=...
Let X and Y be independent continuous random variables, with each one uniformly distributed in the...
Let X and Y be independent continuous random variables, with each one uniformly distributed in the interval from 0 to1. Compute the probability of the following event. XY<=1/7
Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2...
Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2 0<x<y<1 a) Find M = ? b) Find the marginal probability densities. c) P( y> 1/2 | x = .25) = ? d) Corr (x,y) = ?
Let X and Y be random variables with finite means. Show that min g(x) E(Y−g(X))^2=E(Y−E(Y|X))^2 Hint:...
Let X and Y be random variables with finite means. Show that min g(x) E(Y−g(X))^2=E(Y−E(Y|X))^2 Hint: a−b = a−c+c−b
let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i)...
let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i) find the marginal pdf of X and Y respectively, ii) the conditional pdf of Y given x, that is fY|X(y|x), iii) E(Y|x) and Corr(X,Y).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT