Question

In: Statistics and Probability

let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i)...

let the continuous random variables X and Y have the joint pdf:

f(x,y)=6x , 0<x<y<1

i) find the marginal pdf of X and Y respectively,

ii) the conditional pdf of Y given x, that is fY|X(y|x),

iii) E(Y|x) and Corr(X,Y).

Solutions

Expert Solution

i)

The range of x is (0, y)

The range of y is (x, 1)

The marginal PDF of X is,

for 0 < x < 1

The marginal PDF of Y is,

for 0 < y < 1

ii)

for x < y < 1

iii)

For Corr(X,Y),

Cov(X, Y) = E(XY) - E(X) E(Y) = (2/5) - (1/2) * (3/4) = 1/40

Var(X) = E(X2) - [E(X)]2 = (3/10) - (1/2)2 = 1/20

Var(Y) = E(Y2) - [E(Y)]2 = (3/5) - (3/4)2 = 3/80

Corr(X, Y) = Cov(X, Y) /

= (1/40) /

= 0.5773503


Related Solutions

Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0 < x, 0 < y, x + y < 2 and 0 otherwise 1) Find  P[X ≥ 1|Y ≤ 1.5] 2) Find P[X ≥ 0.5|Y ≤ 1]
Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2...
Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2 0<x<y<1 a) Find M = ? b) Find the marginal probability densities. c) P( y> 1/2 | x = .25) = ? d) Corr (x,y) = ?
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤...
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤ y ≤ 1. (i) Find the conditional means of X given Y, and Y given X. (ii) Find the conditional variance of X given Y. (iii) Find the correlation coefficient between X and Y.
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b)...
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b) Find the joint cumulative density function of (X,Y) c) Find the marginal pdf of X and Y. d) Find Pr[Y<X2] and Pr[X+Y>0.5]
Let X and Y have joint PDF f(x) = c(e^-(x/λ + y/μ)) 0 < x <...
Let X and Y have joint PDF f(x) = c(e^-(x/λ + y/μ)) 0 < x < infinity and 0 < y < infinity with parameters λ > 0 and μ > 0 a) Find c such that this is a PDF. b) Show that X and Y are Independent c) What is P(1 < X < 2, 0 < Y < 5) ? Leave in exponential form d) Find the marginal distribution of Y, f(y) e) Find E(Y)
Let X and Y be independent Exponential random variables with common mean 1. Their joint pdf...
Let X and Y be independent Exponential random variables with common mean 1. Their joint pdf is f(x,y) = exp (-x-y) for x > 0 and y > 0 , f(x, y ) = 0 otherwise. (See "Independence" on page 349) Let U = min(X, Y) and V = max (X, Y). The joint pdf of U and V is f(u, v) = 2 exp (-u-v) for 0 < u < v < infinity, f(u, v ) = 0 otherwise....
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤ x ≤ 2 (a) What should a be in order for this to be a legitimate p.d.f? (b) What is the distribution function (c.d.f.) for X? (c) What is Pr(0 ≤ X < 1)? Pr(X > 0.5)? Pr(X > 3)? (d) What is the 90th percentile value of this distribution? (Note: If you do this problem correctly, you will end up with a cubic...
The joint PDF of X and Y is given by f(x, y) = C, (0< x<y<1)....
The joint PDF of X and Y is given by f(x, y) = C, (0< x<y<1). a) Determine the value of C b) Determine the marginal distribution of X and compute E(X) and Var(X) c) Determine the marginal distribution of Y and compute E(Y) and Var(Y) d) Compute the correlation coefficient between X and Y
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Let X and Y be two continuous random variables with the joint probability density function of...
Let X and Y be two continuous random variables with the joint probability density function of for 0 < x < 2, 0 < y < 2, x + y < 1,where c is a constant. (In all the following answers, you do NOT need to find what the value of c is; just treat it as a number.) (a) Write out the marginal distribution of Y. (b) P(Y < 1/3) = ? (c) P(X < 1.5, Y < 0.5)=...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT