Question

In: Statistics and Probability

Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0...

Let X and Y be continuous random variables with joint pdf

f(x, y) = kxy^2 0 < x, 0 < y, x + y < 2

and 0 otherwise

1) Find  P[X ≥ 1|Y ≤ 1.5]

2) Find P[X ≥ 0.5|Y ≤ 1]

Solutions

Expert Solution


Related Solutions

Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2...
Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2 0<x<y<1 a) Find M = ? b) Find the marginal probability densities. c) P( y> 1/2 | x = .25) = ? d) Corr (x,y) = ?
let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i)...
let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i) find the marginal pdf of X and Y respectively, ii) the conditional pdf of Y given x, that is fY|X(y|x), iii) E(Y|x) and Corr(X,Y).
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤ x ≤ 2 (a) What should a be in order for this to be a legitimate p.d.f? (b) What is the distribution function (c.d.f.) for X? (c) What is Pr(0 ≤ X < 1)? Pr(X > 0.5)? Pr(X > 3)? (d) What is the 90th percentile value of this distribution? (Note: If you do this problem correctly, you will end up with a cubic...
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤...
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤ y ≤ 1. (i) Find the conditional means of X given Y, and Y given X. (ii) Find the conditional variance of X given Y. (iii) Find the correlation coefficient between X and Y.
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Let X and Y be two continuous random variables with the joint probability density function of...
Let X and Y be two continuous random variables with the joint probability density function of for 0 < x < 2, 0 < y < 2, x + y < 1,where c is a constant. (In all the following answers, you do NOT need to find what the value of c is; just treat it as a number.) (a) Write out the marginal distribution of Y. (b) P(Y < 1/3) = ? (c) P(X < 1.5, Y < 0.5)=...
Let X and Y be independent Exponential random variables with common mean 1. Their joint pdf...
Let X and Y be independent Exponential random variables with common mean 1. Their joint pdf is f(x,y) = exp (-x-y) for x > 0 and y > 0 , f(x, y ) = 0 otherwise. (See "Independence" on page 349) Let U = min(X, Y) and V = max (X, Y). The joint pdf of U and V is f(u, v) = 2 exp (-u-v) for 0 < u < v < infinity, f(u, v ) = 0 otherwise....
Let the joint p.d.f f(x,y) = 1 for 0 <= x <= 2, 0 <= y...
Let the joint p.d.f f(x,y) = 1 for 0 <= x <= 2, 0 <= y <= 1, 2*y <= x. (And 0 otherwise) Let the random variable W = X + Y. Without knowing the p.d.f of W, what interval of w values holds at least 60% of the probability?
Let X and Y have joint PDF f(x) = c(e^-(x/λ + y/μ)) 0 < x <...
Let X and Y have joint PDF f(x) = c(e^-(x/λ + y/μ)) 0 < x < infinity and 0 < y < infinity with parameters λ > 0 and μ > 0 a) Find c such that this is a PDF. b) Show that X and Y are Independent c) What is P(1 < X < 2, 0 < Y < 5) ? Leave in exponential form d) Find the marginal distribution of Y, f(y) e) Find E(Y)
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 <...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 < x < 1, 0 elsewhere. (a) Find the value of c such that fX(x) is indeed a PDF. (b) Find P(−0.5 < X < 0.3). (c) Find the median of X.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT