Question

In: Statistics and Probability

Let X and Y be jointly normal random variables with parameters E(X) = E(Y ) =...

Let X and Y be jointly normal random variables with parameters E(X) = E(Y ) = 0, Var(X) = Var(Y ) = 1, and Cor(X, Y ) = ρ. For some nonnegative constants a ≥ 0 and b ≥ 0 with a2 + b2 > 0 define W1 = aX + bY and W2 = bX + aY .

(a)Show that Cor(W1, W2) ≥ ρ
(b)Assume that ρ = 0.1. Are W1 and W2 independent or not? Why?
(c)Assume now that ρ = 0.5. Find a ≥ 0 and b ≥ 0 such that E(W2|W1 = 1) = Var(W2|W1 = 1) = 0.5.

Solutions

Expert Solution


Related Solutions

Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X)...
Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X) = var(Y) = 10. A new random variable is defined as: W = X+2Y+2. a. Find E[W] and var[W] if X and Y are independent. b. Find E[W] and var[W] if E[XY] = 20. c. If we find that E[XY] = E[X]E[Y], what do we know about the relationship between the random variables X and Y?
Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2...
Let X and Y be two jointly continuous random variables with joint PDF f(x,y) = Mxy^2 0<x<y<1 a) Find M = ? b) Find the marginal probability densities. c) P( y> 1/2 | x = .25) = ? d) Corr (x,y) = ?
Let X and Y be independent Poisson random variables with parameters 1 and 2, respectively, compute...
Let X and Y be independent Poisson random variables with parameters 1 and 2, respectively, compute P(X=1 and Y=2) P(X+Y>=2) Find Poisson approximations to the probabilities of the following events in 500 independent trails with probabilities 0.02 of success on each trial. 1 success 2 or fewer success.
Let X and Y be random variables with finite means. Show that min g(x) E(Y−g(X))^2=E(Y−E(Y|X))^2 Hint:...
Let X and Y be random variables with finite means. Show that min g(x) E(Y−g(X))^2=E(Y−E(Y|X))^2 Hint: a−b = a−c+c−b
Consider the observations jointly taken on the binary random variables X and Y given in the...
Consider the observations jointly taken on the binary random variables X and Y given in the “Problem 1” worksheet in the Table. 1. Organize the data in a two-way table by counting the number of observations that fall within each of the following cells: {X = 0, Y = 0}, {X = 0, Y = 1}, {X = 1, Y = 0}, and {X = 1, Y = 1}. 2. Use observed cell counts found in part 1 to estimate...
Let X and Y be two discrete random variables with a common mgf of e^(4t). After...
Let X and Y be two discrete random variables with a common mgf of e^(4t). After some analysis you conclude, X = 4 and Y = 6. Is this a valid claim? Why or why not?
Let X and Y be two discrete random variables with a common mgf of e^(4t). After...
Let X and Y be two discrete random variables with a common mgf of e^(4t). After some analysis you conclude, X = 4 and Y = 6. Is this a valid claim? Why or why not?
Let X and Y be two independent random variables such that X + Y has the...
Let X and Y be two independent random variables such that X + Y has the same density as X. What is Y?
Let X and Y be uniform random variables on [0, 1]. If X and Y are...
Let X and Y be uniform random variables on [0, 1]. If X and Y are independent, find the probability distribution function of X + Y
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a...
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a binomial random variable with parameters (m, p). What is the pdf of the random variable Z=X+Y? (b) Let X and Y be indpenednet random variables. Let Z=X+Y. What is the moment generating function for Z in terms of those for X and Y? Confirm your answer to the previous problem (a) via moment generating functions.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT