Question

In: Statistics and Probability

Let X and Y be independent continuous random variables, with each one uniformly distributed in the...

Let X and Y be independent continuous random variables, with each one uniformly distributed in the interval from 0 to1. Compute the probability of the following event.

XY<=1/7

Solutions

Expert Solution

Given:

Let X and Y be independent continuous random variables, with each one uniformly distributed in the interval from 0 to1.

To find : The probability of XY<=1/7

Now,

X ~ U(0,1), Y ~ U(0,1)

Therefore the probability of XY<= 1/7 is 0.4208


Related Solutions

Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1)....
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1). (a) Find the cumulative distribution function of X/Y. (b) Find the cumulative distribution function of XY. (c) Find the mean and variance of XY/Z.
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the...
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the cumulative distribution and probability density function of Z = X + Y.
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the...
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the expected value E(XY ). b) What is the probability density function fZ(z) of Z = XY ? Hint: First compute the cumulative distribution function FZ(z) = P(Z ≤ z) using a double integral, and then differentiate in z. c) Use your answer to b) to compute E(Z). Compare it with your answer to a).
Let Y and Z be independent continuous random variables, both uniformly distributed between 0 and 1....
Let Y and Z be independent continuous random variables, both uniformly distributed between 0 and 1. 1. Find the CDF of |Y − Z|. 2. Find the PDF of |Y − Z|.
Let U and V be independent continuous random variables uniformly distributed from 0 to 1. Let...
Let U and V be independent continuous random variables uniformly distributed from 0 to 1. Let X = max(U, V). What is Cov(X, U)?
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Let X, Y be independent exponential random variables with mean one. Show that X/(X + Y...
Let X, Y be independent exponential random variables with mean one. Show that X/(X + Y ) is uniformly distributed on [0, 1]. (Please solve it with clear explanations so that I can learn it. I will give thumbs up.)
1) Let U1, U2, ... be independent random variables, each uniformly distributed over the interval (0,...
1) Let U1, U2, ... be independent random variables, each uniformly distributed over the interval (0, 1]. These random variables represent successive bigs on an asset that you are trying to sell, and that you must sell by time = t, when the asset becomes worthless. As a strategy, you adopt a secret number \Theta and you will accept the first offer that's greater than \Theta . The offers arrive according to a Poisson process with rate \lambda = 1....
Let X and Y be two independent random variables such that X + Y has the...
Let X and Y be two independent random variables such that X + Y has the same density as X. What is Y?
Let X and Y be two independent and identically distributed random variables with expected value 1...
Let X and Y be two independent and identically distributed random variables with expected value 1 and variance 2.56. (i) Find a non-trivial upper bound for P(|X + Y − 2| ≥ 1). 5 MARKS (ii) Now suppose that X and Y are independent and identically distributed N(1, 2.56) random variables. What is P(|X + Y − 2| ≥ 1) exactly? Briefly, state your reasoning. 2 MARKS (iii) Why is the upper bound you obtained in Part (i) so different...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT