Question

In: Advanced Math

Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...

Solve the following wave equation using Fourier Series

a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx, ut(x,0) = pi - x

Solutions

Expert Solution

I explained in detail.


Related Solutions

Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < 1,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x2, ut(x,0) = 0
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx - sin3x
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x/2
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, ux(0,t) = 0 = ux(1,t), u(x,0) = 1 - x2
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0)...
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0) = 0 ut(x, 0) = 0.1x(π − x) u(0,t) = u(π,t) = 0 (a) Solve the problem using the separation of variables. (b) Solve the problem using D’Alembert’s solution. Hint: I would suggest doing an odd expansion of ut(x,0) first; the final solution should be exactly like the one in (a).
Consider the equation utt = uxx x ∈ (0, pi) ux(0,t) = u(pi,t) = 0 Write...
Consider the equation utt = uxx x ∈ (0, pi) ux(0,t) = u(pi,t) = 0 Write the series expansion for a solution u(x,t)
Expand in Fourier series: f(x) = x|x|, -L<x<L, L>0 f(x) = cosx(sinx)^2 , -pi<x<pi f(x) =...
Expand in Fourier series: f(x) = x|x|, -L<x<L, L>0 f(x) = cosx(sinx)^2 , -pi<x<pi f(x) = (sinx)^3, -pi<x<pi
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Find the Fourier series expansion of f(x)=sin(x) on [-pi,pi]. Show all work and reasoning.
Find the Fourier series expansion of f(x)=sin(x) on [-pi,pi]. Show all work and reasoning.
Solve for the exponential Fourier series f(x) = cos(pix) for 0<x<1. Sketch the frequency spectrum for...
Solve for the exponential Fourier series f(x) = cos(pix) for 0<x<1. Sketch the frequency spectrum for the series on the interval -3<= n<= 3.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT