Question

In: Advanced Math

Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi,...

Solve the following heat equation using Fourier Series

uxx = ut, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx - sin3x

Solutions

Expert Solution



Related Solutions

Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x/2
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, ux(0,t) = 0 = ux(1,t), u(x,0) = 1 - x2
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx, ut(x,0) = pi - x
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < 1,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x2, ut(x,0) = 0
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Find the finite-difference solution of the heat-conduction problem PDE: ut = uxx 0 < x <...
Find the finite-difference solution of the heat-conduction problem PDE: ut = uxx 0 < x < 1, 0 < t < 1 BCs: ⇢ u(0, t) = 0 ux(1, t) = 0 0 < t < 1 IC: u(x, 0) = sin(pi x) 0 x  1 for t = 0.005, 0.010, 0.015 by the explicit method. Assume
Consider the equation utt = uxx x ∈ (0, pi) ux(0,t) = u(pi,t) = 0 Write...
Consider the equation utt = uxx x ∈ (0, pi) ux(0,t) = u(pi,t) = 0 Write the series expansion for a solution u(x,t)
Using the method of separation of variables and Fourier series, solve the following heat conduction problem...
Using the method of separation of variables and Fourier series, solve the following heat conduction problem in a rod. ∂u/∂t =∂2u/∂x2 , u(0, t) = 0, u(π, t) = 3π, u(x, 0) = 0
Consider the nonhomogenous heat equation with time dependent sources ut = uxx + xt, an initial...
Consider the nonhomogenous heat equation with time dependent sources ut = uxx + xt, an initial condition u(x, 0) = x2 and inhomogenous boundary conditions ux(0, t) = 2t and ux(1, t) = 4. Use eigen function expansion to find the solution u(x, t).
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT