Question

In: Advanced Math

Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < 1,...

Solve the following wave equation using Fourier Series

a2uxx = utt, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x2, ut(x,0) = 0

Solutions

Expert Solution


Related Solutions

Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx, ut(x,0) = pi - x
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x/2
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, ux(0,t) = 0 = ux(1,t), u(x,0) = 1 - x2
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx - sin3x
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0)...
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0) = 0 ut(x, 0) = 0.1x(π − x) u(0,t) = u(π,t) = 0 (a) Solve the problem using the separation of variables. (b) Solve the problem using D’Alembert’s solution. Hint: I would suggest doing an odd expansion of ut(x,0) first; the final solution should be exactly like the one in (a).
Solve for the exponential Fourier series f(x) = cos(pix) for 0<x<1. Sketch the frequency spectrum for...
Solve for the exponential Fourier series f(x) = cos(pix) for 0<x<1. Sketch the frequency spectrum for the series on the interval -3<= n<= 3.
Solve the following differential equation using the power series method. (1+x^2)y''-y'+y=0
Solve the following differential equation using the power series method. (1+x^2)y''-y'+y=0
solve the wave equation utt=4uxx for a string of length 3 with both ends kept free...
solve the wave equation utt=4uxx for a string of length 3 with both ends kept free for all time (zero Neumann boundary conditions) if initial position of the string is given as x(3-x), and initial velocity is zero.
solve using series solutions (x^+1)y''+xy'-y=0
solve using series solutions (x^+1)y''+xy'-y=0
solve any question about fourier series by using MATLAB
solve any question about fourier series by using MATLAB
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT