Question

In: Advanced Math

Solve for the exponential Fourier series f(x) = cos(pix) for 0<x<1. Sketch the frequency spectrum for...

Solve for the exponential Fourier series f(x) = cos(pix) for 0<x<1.

Sketch the frequency spectrum for the series on the interval -3<= n<= 3.

Solutions

Expert Solution


Related Solutions

sketch the fourier series of f(x) on the interval -L <= x <= L for A)...
sketch the fourier series of f(x) on the interval -L <= x <= L for A) f(x) = (x when x < L/2 and 0 when > L/2) B) f(x) = e^-x
Write the Taylor series for f(x) = cos x about x = 0.
P1. Write the Taylor series for f(x) = cos x about x = 0. State the Taylor polynomials T2(x), T4(x), and T6(x) (note that T3(x) will be the same as T2(x), and T5(x) will be the same as T4(x)). Plot f(x), T2(x), T4(x), and T6(x), together on one graph, using demos or similar (cut-and-paste or reproduce below).
Expand in Fourier series: Expand in fourier sine and fourier cosine series of: f(x) = x(L-x),...
Expand in Fourier series: Expand in fourier sine and fourier cosine series of: f(x) = x(L-x),    0<x<L Expand in fourier cosine series: f(x) = sinx, 0<x<pi Expand in fourier series f(x) = 2pi*x-x^2, 0<x<2pi, assuming that f is periodic of period 2pi, that is, f(x+2pi)=f(x)
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x/2
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < 1, t > 0, ux(0,t) = 0 = ux(1,t), u(x,0) = 1 - x2
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < 1,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < 1, t > 0, u(0,t) = 0 = u(1,t), u(x,0) = x2, ut(x,0) = 0
Solve cos^2(x)-cos(x)=0 for x,
Solve cos^2(x)-cos(x)=0 for x,
Calculate the fourier series of these periodic functions f(x) = cosh(2πax + πa), x ∈ [0,...
Calculate the fourier series of these periodic functions f(x) = cosh(2πax + πa), x ∈ [0, 1) and f(x) = cos(2πax − aπ) x ∈ [0, 1). The period of these functions is 1. 1-periodic
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi,...
Solve the following heat equation using Fourier Series uxx = ut, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx - sin3x
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinx, ut(x,0) = pi - x
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT